
 Abelian fibrations, string junctions, and flux/geometry duality

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP04(2009)119

(http://iopscience.iop.org/1126-6708/2009/04/119)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:30

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/04
http://iopscience.iop.org/1126-6708/2009/04/119/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
4
(
2
0
0
9
)
1
1
9

Published by IOP Publishing for SISSA

Received: March 11, 2009

Accepted: April 15, 2009

Published: April 28, 2009

Abelian fibrations, string junctions, and flux/geometry

duality

Ron Donagi,a Peng Gao,b and Michael B. Schulzc

aDepartment of Mathematics, University of Pennsylvania,

Philadelphia, PA 19104, U.S.A.
bDepartments of Physics, University of Toronto,

Toronto, Ontario M5S 1A7, Canada
cDepartment of Physics, Bryn Mawr College,

Bryn Mawr, PA 19010, U.S.A.

E-mail: donagi@math.upenn.edu, gaopeng@physics.utoronto.ca,

mbschulz@brynmawr.edu

Abstract: In previous work, it was argued that the type IIB T 6/Z2 orientifold with a

choice of flux preserving N = 2 supersymmetry is dual to a class of purely geometric type

IIA compactifications on abelian surface (T 4) fibered Calabi-Yau threefolds. We provide

two explicit constructions of the resulting Calabi-Yau duals. The first is a monodromy

based description, analogous to F-theory encoding of Calabi-Yau geometry via 7-branes

and string junctions, except for T 4 rather than T 2 fibers. The second is an explicit algebro-

geometric construction in which the T 4 fibers arise as the Jacobian tori of a family of genus-2

curves. This improved description of the duality map will be a useful tool to extend our

understanding of warped compactifications. We sketch applications to related work to

define warped Kaluza-Klein reduction in toroidal orientifolds, and to check the modified

rules for D-brane instanton zero mode counting due to the presence of flux and other D-

branes. The nontrivial fundamental groups of the Calabi-Yau manifolds constructed also

have potential applications to heterotic model building.

Keywords: Flux compactifications, String Duality, F-Theory, Superstring Vacua

ArXiv ePrint: 0810.5195

c© SISSA 2009 doi:10.1088/1126-6708/2009/04/119

mailto:donagi@math.upenn.edu
mailto:gaopeng@physics.utoronto.ca
mailto:mbschulz@brynmawr.edu
http://arxiv.org/abs/0810.5195
http://dx.doi.org/10.1088/1126-6708/2009/04/119


J
H
E
P
0
4
(
2
0
0
9
)
1
1
9

Contents

1 Introduction 1

2 Monodromy and junction description of elliptic fibrations 4

2.1 F-theory 5

2.1.1 The F-theory limit 5

2.1.2 Singular fibers, (p, q) 7-branes, and (p, q) strings 6

2.2 F-theory on K3 6

2.3 Monodromies and braiding 7

2.4 String junctions and gauge symmetry 9

2.5 Junction lattice 10

2.5.1 Junction lattice of 1
2K3 = dP9 13

2.5.2 Mathematical interpretation of the junction lattice 14

2.5.3 An example with coalesced 7-branes 17

2.6 Weakly integral junction lattice and torsion sections 18

3 Monodromy and junction description of CY duals of T 6/Z2 20

3.1 The duality map 20

3.2 Known properties of type IIA Calabi-Yau duals Xm,n 21

3.3 Monodromy matrices for the abelian surface fibrations 23

3.3.1 Fundamental group 24

3.3.2 Calabi-Yau dual interpretation of T 6/Z2 RR tadpole 25

3.4 Mordell-Weil lattice from junction lattice 25

3.5 Examples with coalesced fibers 27

3.5.1 Z2m ⊕ Zm torsion, m = 1, 2, 3 28

3.5.2 Z2
⊕2 ⊕ Z2m

⊕2 torsion, m = 1, 2 28

3.5.3 Z4 ⊕ Z2
⊕2 torsion and Z2

⊕3 torsion 30

3.6 Connections to other Calabi-Yau manifolds with nontrivial π1 31

4 Algebraic construction in the principally polarized case 32

4.1 The surface S 33

4.2 The 3-fold X 35

4.3 Checks 37

4.3.1 Intersection numbers 37

4.3.2 Second Chern class c2(X ) 38

4.3.3 Mordell-Weil lattice: D−
12 38

4.4 Mordell-Weil torsion and connection to other CY manifolds 40

5 Conclusions and future directions 42



J
H
E
P
0
4
(
2
0
0
9
)
1
1
9

A Braiding operations and monodromy matrices 44

A.1 Elliptic fiber 44

A.2 Abelian surface fiber 46

B Complex tori, abelian varieties, and the Mordell-Weil lattice 46

C Mordell-Weil height pairing from intersections 48

C.1 Elliptic fibration over a curve 48

C.2 Abelian surface fibration over a curve 50

D Monodromy matrices for the abelian fibration Xm,n 51

E Null loop junctions of Xm,n 54

F Complex curves and their Jacobians 56

G Genera of curves in P1
× P1 58

H Direct image functor 58

I Proof of the Calabi-Yau condition 60

J Intersections of theta surfaces of X 61

1 Introduction

An enduring theme in string theory has been duality — the existence of dissimilar, but

nonetheless equivalent discriptions of the same physical string theory vacuum. One par-

ticularly fruitful avenue has been open/closed string duality, which relates the physics of

D-branes and open strings to purely geometrical closed string backgrounds. In this way,

we have gained insight into strongly coupled gauge theories from geometry, and into the

geometry of special holonomy manifolds from consistent D-brane constructions.

Given the prominence of type IIB flux compactifications in string theory model build-

ing, it seems useful to ask whether duality might again be put to productive use to address

shortcomings in our understanding of this class of vacua. For example: Flux compactifi-

cations are warped compactifications with D-branes and internal magnetic flux. The word

“warped” means that a scale factor governing the overall size of 4D spacetime varies from

point to point in the 6D compact extra dimensions. In contrast to standard compacti-

fications, where there is a well defined Kaluza-Klein (KK) procedure for extracting the

4D effective field theory from 10D, there is at present only a partial understanding of the

analogous procedure for warped compactifications [10, 19, 22, 26, 53]. Duality is one route

through which a definition can be sought.

– 1 –
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In the context of N = 2 supersymmetry, it was shown in ref. [46] that the simplest

class of IIB flux compactifications, the type T 6/Z2 orientifold with D3 branes and N = 2

flux, is dual to a class of purely geometric type IIA Calabi-Yau compactifications with no

warping, no D-branes and no flux.1 T 6/Z2, while too simplistic to itself form the basis for

a realistic model, has a good track record as a source of insight into flux compactifications.

It was the setting for the first global analysis of moduli stabilization from flux [21, 37],

and a point of departure for the study of de Sitter vacua [44] and other forms of NS sector

flux [38, 39, 45, 49], including twists of topology and nongeometric flux [33]. A deeper

understanding of the duality map between T 6/Z2 and conventional type IIA Calabi-Yau

compactifications stands to shed insight into warped compactifications in general. However,

a prerequisite is a precise understanding of both sides of the duality map.

The purpose of the work reported here is to explicitly construct the type IIA Calabi-Yau

compactifications dual to T 6/Z2, and to make more precise the encoding of their topology

and geometry by the dual configuration of D-branes and flux. The Calabi-Yau manifolds

Xm,n that arise are abelian surface (T 4) fibrations over P1. Many of their topological

properties were deduced in ref. [46], however an explicit construction was left for future

work. We provide two such constructions here.

The first construction is in terms of monodromy matrices of the abelian fibrations

Xm,n. This construction is largely inspired by the work [15–18, 23] on string junctions in

F-theory and its relation to the geometry of elliptic surfaces. Our work generalizes this

formalism to the case of T 4 rather than T 2 fiber. We show that the D3 tadpole condition in

T 6/Z2 maps to the condition that the total monodromy about all singular fibers of Xm,n is

unity. Building on ref. [23], we show that the junction formalism is again an efficient means

to compute Mordell-Weil lattice of sections of the abelian fibration in the T 4 fibered case.

For the Calabi-Yau manifold Xm,n, we show that the free component of the Mordell-Weil

lattice is the DM root lattice, where M = 16− 4mn is the number of D3-branes in T 6/Z2.

The generic torsion component of the Mordell-Weil group is Zm × Zm, in agreement with

the isometry group inferred in ref. [46]; at special points in moduli space it is enhanced to

a larger discrete group, characterized by the lattice of weakly integral null junctions. We

are also able to use the monodromy description to verify the Zn × Zn fundamental group

deduced by duality in ref. [46]. Finally, quotienting by isometries gives a general way to

construct new Calabi-Yau manifolds with nontrivial fundamental group.

The second construction takes an explicit algebraic geometry approach. In the case, we

begin with an auxilliary surface S that is fibered by genus-2 curves over P1. By replacing

each genus-2 curve with its Jacobian torus, we obtain a 3-fold that we show is Calabi-

Yau. Its homology, interection numbers, Mordell-Weil lattice and second Chern class all

agree with those of X1,1. Therefore, the two are equivalent up to homotopy type by Wall’s

theorem [35, 54]. Finally, we again explore the enhancement of Mordell-Weil torsion (i.e.,

the isometry group) at special loci in moduli space in this framework, and connect to a

subset of the results obtained from the junction description.

1A similar duality was explored in ref. [2], where it was shown that the class of F-theory compactifications

on K3 × K3 with N = 2 flux is again dual to purely geometric Calabi-Yau compactifications of type IIA

string theory. In this case, the resulting manifolds are K3 fibered.

– 2 –
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This work, together with ref. [46], lays the groundwork for the following applications,

to be reported in separate articles, as sketched in section 5:

i. to define warped KK reduction for simple warped compactifications by duality to

conventional Calabi-Yau compactifications [7].

ii. in the context of D3-brane instantons, to check the modified rules for instanton zero

mode counting due to flux or intersections with other localized objects, by duality to

worldsheet instantons in type IIA [25].

As a byproduct, the following application arises, as explained in section 3.6:

iii. to construct examples of new Calabi-Yau manifolds with nontrivial fundamental

group of interest for heterotic model building [20, 43]. As highlighted in refs. [8,

9, 12, 29–31], very few Calabi-Yau manifolds with nontrivial fundamental group are

explicitly known.

An outline of the paper is as follows:

In section 2, we review the monodromy and junction description of elliptic fibrations.

This establishes the background and point of view in preparation for an analogous descrip-

tion of abelian surface fibered Calabi-Yau manifolds in section 3. For simplicity, we focus

on the case of P1 base. The topology of a generic elliptic fibration over P1 is defined by a

collection of points on the P1 and the monodromies about the I1 singular fibers at these

points. The collection of monodromies is unique up to braiding operations and overall

SL(2, Z) conjugation. Via the F-theory, this is the same data that determines a collection

of 7-branes in a type IIB compactification on the base of the elliptic fibration, and their

(p, q) types. The W -bosons of the spontaneously broken gauge theory on the 7-branes

are string junctions terminating on 7-branes. Each can be represented by a tree graph on

the base, and encodes a curve in the elliptic fibration with zero intersection with the fiber

and base. Following refs. [15–18], we explain how various coalescing collections of 7-branes

realize unbroken ADE type gauge symmetries. Finally, following ref. [23], we describe how

the junction lattice determines the Mordell-Weil group of rational sections of the elliptic

fibration.2

In section 3, we review the duality map between the type IIB T 6/Z2 orientifold with

N = 2 flux and type IIA compactified on the Calabi-Yau manifolds Xm,n. Then, we

generalize the mondoromy and junction description of the previous sections to be applicable

to abelian surface fibrations, focusing on the Xm,n. In particular, we determine collections

of SL(4, Z) monodromy matrices that define the topology of the Xm,n. The condition

that the total monodromy be unity reproduces the D3 charge cancellation condition of

T 6/Z2. The Xm,n are abelian surface fibrations over P1, where an abelian surface is a T 4

that admits an embedding in complex projective space. The latter endows the T 4 with a

Hodge form (or equivalently, a theta divisor), which is precisely the additional ingredient

2To be precise, we determine both the Mordell-Weil group and the Mordell-Weil lattice. The Mordell-

Weil group includes the torsion sections, but not the lattice inner product. The Mordell-Weil lattice includes

the lattice inner product, but not the torsion sections.

– 3 –
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necessary to define an inner product and give the space of junctions the structure of a

lattice. This lattice again determines the Mordell-Weil group of sections, including torsion,

and the torsion subgroup is an isometry group of the Calabi-Yau manifold. We describe

its enhancement at singular loci in moduli space in terms of weakly integral null junctions

that become relevant when I1 fibers coalesce. Quotienting by these isometries gives new

Calabi-Yau manifolds with nontrivial fundamental group.

In section 4, we provide an algebro-geometric construction of X1,1 as the relative Jaco-

bian of a genus-2 fibration over P1. Every smooth principally polarized abelian surface is

the Jacobian of some genus-2 curve. Therefore, in the principally polarized cases m = n,

we might expect to realize the Calabi-Yau threefold Xm,n as the relative (i.e., fiberwise)

Jacobian of an auxilliary surface fibered by genus-2 curves. We show that this is indeed

the case. Since a genus-2 curve is the double cover of P1 with 6 branch points, we consider

a surface S that is the double cover of P1 × P1 branched over a (6, 2) curve B. The rela-

tive Jacobian JS/P1 indeed reproduces the Calabi-Yau manifold X1,1. After verifying the

Calabi-Yau condition, we show that the Hodge numbers, intersection numbers, and second

Chern class of JS/P1 match those of X1,1. These are the classifying data of a Calabi-Yau

threefold up to homotopy type, by Wall’s theorem and its extensions. Finally, we compute

the Mordell-Weil lattice and show that it matches as well. At special loci in moduli space,

where the branch curve B factorizes, we compute the Mordell-Weil torsion, and reproduce

some of the results of section 3.

We conclude with summary of results and a discussion of connections to related and

ongoing work. Ongoing work by the authors include applications to warped KK reduction,

D-brane instanton corrections, heterotic model building, and SU(2) stucture Calabi-Yau

compactifications, where the topology of an abelian surface fibration spontaneously breaks

extended supersymmetry. We also outline connections to recent work on D(imensional)

duality [27] and semi-flat T-fold compactifications [36, 56].

Derivation of key results and relevant mathematical and physical background can be

found in the appendices. Appendix A describes how the monodromies of branes or singular

fibers are transformed under braiding motions of the locations of these objects. The dual-

ity derivation of the monodromy matrices of Xm,n is given in appendix D, and the lattice

vectors of null loop junctions are computed in appendix E. Apps. B and C contain back-

ground on abelian varieties and the Mordell-Weil lattice. Appendix F is an introduction to

complex curves, their Jacobians, and line bundles. Appendix H gives background on direct

images. Finally, Apps. G, I and J contain the derivations of mathematical results used in

section 4.

2 Monodromy and junction description of elliptic fibrations

Given an elliptically fibered3 Calabi-Yau manifold X with base B, F-theory provides a

nonperturbative definition of a family of type IIB string theory vacua with spatially varying

dilaton-axion τ [55]. The type IIB vacua are defined by “Newton’s Law,” F = M |A
T2→0 [3,

55]. That is, we consider M-theory on X in the limit that the area of the elliptic fiber goes

3Elliptic and abelian surface fibrations always refer to fibrations with section in this paper.

– 4 –
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to zero, while holding the complex structure fixed. The result is type IIB compactified

on B, with τ identified with the complex structure modulus of the elliptic fiber at each

point on B. The codimension 1 singular locus of the elliptic fibration on B is wrapped

by 7-branes in the IIB description, where the type of each 7-brane is determined by the

monodromy of τ about the 7-brane worldvolume.

Conversely, the nonperturbative type IIB description provides a useful encoding of

the geometry of X . The collection of (p, q) 7-branes determines the degenerations of the

elliptic fibration and the corresponding monodromy matrices about singular fibers. These

data determine the topology of X . Additional geometric information is efficiently encoded

by string junctions terminating on the 7-branes. These string junctions are the W -bosons

of the 7-brane gauge theory. Their equivalence classes form a charge lattice known as

the junction lattice. The string junctions lift to M2-branes wrapped on 2-cycles of X , so

they encode information about the geometry of 2-cycles. For example, enhanced gauge

symmetry corresponds to coalescing groups of 7-branes in IIB. In this case, the massless

W -bosons are string junctions contractible to zero length, which lift to 2-cycles contractible

to zero volume. Roughly speaking, in the case of P1 base, H2(X ) comes from the generic

fiber, extra components of singular fibers, and sections of the elliptic fibration π : X → P1.

The string junctions are related to the latter. As we will see in section 2.5.2, the junction

lattice determines the Mordell-Weil lattice of rational sections of the elliptic fibration [23].

To describe the geometry of the Calabi-Yau duals of T 6/Z2 in section 3, we apply a

similar monodromy and junction based description to the case of T 4 rather than T 2 fiber.

With this goal in mind, the remainder of this section is devoted to laying the groundwork

for the generalization by analyzing the simpler elliptically fibered case in more detail.

2.1 F-theory

2.1.1 The F-theory limit

Let us briefly review the duality chain and limit that relates the initial M-theory background

to the final type IIB background. We begin with M-theory compactified on an elliptic

fibration X over base B. The generic fiber has two nontrivial 1-cycles α and β. In the

limit of small Rα, the background is described by perturbative type IIA string theory with4

gIIA
s = Rα ≪ 1. The IIA compactification manifold is the base of the S1

α fibration. If Rβ

is also small, then it is appropriate to T-dualize to type IIB. In the Rβ → 0 limit, the

type IIB β cycle decompactifies, leaving type IIB compactified on the base B.

For the special case of a rectangular torus, the type IIB dilaton-axion is purely imag-

inary and can be identified with the complex structure modulus of the elliptic fiber:

i/gIIB
s = iRIIA

β /gIIA
s = iRβ/Rα = τ . For a nonrectangular torus, the identification re-

mains valid and the real part of the complex structure modulus gives nonzero type IIB

axion C(0).

4Here, we assume unit periodicity x ∼= x + 1 for toroidal coordinates and set 2π
√

α′ = 1 for simplicity.

– 5 –
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Type IIB: X :

B B
γ γ

(p, q) 7-brane

generic T 2 fiber

singular fiber,
pα + qβ cycle

shrinks

α

β

Figure 1. F-theory relates a (p, q) 7-brane in type IIB to an elliptic fiber with vanishing (p, q)-cycle

in X .

2.1.2 Singular fibers, (p, q) 7-branes, and (p, q) strings

For now we assume that degenerations of the elliptic fibration X are of Kodaira type I1:

a (p, q) 1-cycle pα + qβ ⊂ T 2 vanishes over a codimension 1 locus D in the base. In the

corresponding type IIB interpretation, a (p, q) 7-brane wraps the divisor D ⊂ B and spans

the noncompact dimensions of spacetime (see figure 1). Here, a (p, q) 7-brane is an object

on which a (p, q) string can end.5 Thus, a (1, 0) 7-brane is a D7-brane.

The F-theory limit relates the dual interpretations of the integers (p, q) as string charge

and homology vector. A (p, q) string in type IIB lifts to an M-theory membrane wrapped

on a pα + qβ cycle in the fiber of X .

2.2 F-theory on K3

The simplest F-theory compactification manifold with nontrivial base is a K3 surface. A

generic elliptic K3 surface is an elliptic fibration over a P1 base, with 24 I1 singular fibers

over points on P1. The corresponding IIB background is a compactification of type IIB

string theory on P1 with 24 (p, q) 7-branes, each located at a point on P1 and filling the

7+1 noncompact dimensions of spacetime.

The weak coupling perturbative interpretation of this background was well known

long before the formulation of F-theory. It is the T 2/Z2 orientifold, dual to type I string

theory via T-duality in the two T 2 directions. There are 16 D7-branes at arbitrary points

on T 2/Z2
∼= P1 and 4 O7-planes located at the fixed points of the Z2 involution. A

total of 16+4=20 objects is too few to correspond to the 24 (p, q) 7-branes required by

F-theory. However, it is already clear from the perturbative description that the O7-

planes are poorly described by leading order supergravity and thus need not represent

5A (p, q) string is the bound state of p fundamental and q D-strings. The space of all (p, q) strings, with

p and q relatively prime, is the SL(2, Z) S-duality orbit of a fundamental string.

– 6 –
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Figure 2. A collection A,B,C points in P1, and their branch cuts. The collection consists of 16

A points and 4 B,C pairs.

fundamental objects [45, 46, 48]. At finite distance from the O7 planes, the string coupling

diverges. The geometry is a warped product R7,1 ⋊P1 in which a P1 dependent scale factor

multiplies the flat metric on R7,1, and this scale factor diverges at finite distance from the

O7-planes.

F-theory provides an elegant nonperturbative resolution of this pathology. Each O7-

plane resolves to a pair of (p, q) 7-branes. Up to braiding operations on the 7-branes

described below, the pair is (p, q) = (1,−1) and (1, 1). The separation between the two

7-branes depends on the string coupling as exp(−1/gs), so it is invisible in perturbation

theory.6 This phenomenon can also be described by SU(2) Seiberg-Witten theory: N = 2,

SU(2) super-Yang-Mills theory is the theory on D3-brane probe in the background of an

O7-plane [4]. In the classical gauge theory moduli space, there is an enhanced SU(2)

symmetry point where the D3-brane coincides with the O7-plane. Quantum mechanically

(due to instanton corrections in the gauge theory), the SU(2) point is lifted and replaced

by two massless dyon points separated by a distance of order exp(−4π/g2
YM) [47]. The two

dyon hypermultiplets are (p, q) strings stretched from the D3 probe to the (p, q) = (1,±1)

7-branes. A dyon becomes massless when the D3-brane is coincident with the corresponding

7-brane.

2.3 Monodromies and braiding

Three types of (p, q) 7-branes appeared in the type IIB description of F-theory on K3 given

in the previous section. Their (p, q) charges are A = (1, 0), B = (1,−1) and C = (1, 1). In

this notation, a D7-brane is an A brane located at a point on P1 and an O7-plane resolves

to a B,C pair.

We can represent the IIB background, or equivalently the K3 surface, by arranging the

A, B and C points on the projective plane P1, keeping track of the locations of branch cuts

(see figure 2). Here, the branch cuts denote discontinuities in τ . If we do not introduce

branch cuts, then τ is multiple-valued. For example, τ → τ + 1 after circuiting a D7-brane

counterclockwise, since Re τ = C(0) and since a D7-brane is a source of Ramond-Ramond

(RR) flux F(1) = d(C(0)). Alternatively, we can opt for a single valued RR potential

C(0) plus a Dirac string, that is, a branch cut. Then, the discontinuity in crossing the

6From the M-theory perspective, the corrections come from Kaluza-Klein modes along the circles in

the elliptic fiber. From the IIB perspective, the corrections come from (p, q)-strings, whereas the leading

supergravity description only contains the effective field theory of a fundamental string.
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Figure 3. A collection of X[p,q] points in P1, and their branch cuts.

X[p,q]

�

�

�

�

�

�

�

//(p′
q′

) //(p′′
q′′

)
= K[p,q]

(p′
q′

)

Figure 4. A string crossing a branch cut.

branch cut of a D7-brane counterclockwise is τ → τ − 1. There are similar, SL(2, Z) dual,

discontinuities along the branch cuts of other (p, q) 7-branes. Let us agree to draw all

branch cuts as vertical lines intersecting at the point at infinity on P1. This determines

an ordering (left to right in figures 2 and 3) of the 7-branes, which we summarize in the

diagram of figure 2, or more compactly as

A16 BCBCBCBC. (2.1)

We denote an arbitrary (p, q) 7-brane (or singular fiber) by X[p,q], so for a more general

collection of (p, q) 7-branes,

X[p1,q1]X[p2,q2] . . .X[pn,qn], (2.2)

we have a diagram of the form shown in figure 3.

We have already observed that a (p, q) string can end at (p, q) 7-brane. When a (p′, q′)

string crosses a branch cut of a (p, q) 7-brane in the counterclockwise direction about the

branch point, the charges of the string are transformed to new charges (p′′, q′′), as shown

in figure 4.

Let z denote the column vector
(p
q

)
, with z′ and z′′ defined analogously. Then, the trans-

formation is z′′ = K[p,q] z
′, where K[p,q] is the monodromy matrix

K[p,q] =

(
1 + pq −p2

q2 1 − pq

)
∈ SL(2, Z). (2.3)
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In particular, the monodromy matrices for A, B, C, and the pair O = BC are

KA =

(
1 −1

0 1

)
, KB =

(
0 −1

1 2

)
, KC =

(
2 −1

1 0

)
, (2.4)

and KO = KCKB = −
(

1 4

0 1

)
. (2.5)

The fact that KO equals K−4
A

up to a minus sign indicates that an O7-plane has RR

charge −4 times the charge of a D7-brane. The overall minus sign is due to the orientifold

involution.

The monodromy matrices also have a topological interpretation on the K3 surface.

Here, p and q give the components of a 1-cycle pα + qβ in an elliptic fiber, and K[p,q]

determines how these components transform when the cycle crosses the branch cut.

In the case of P1 base, a loop that encloses all 7-branes (or singular elliptic fibers) is

contractible to the (smooth) point at infinity on P1. Therefore, the associated monodromy

must be trivial. Indeed, for the A,B,C description of K3,

(
KCKB

)4
KA

16 = 1. (2.6)

Finally, since the (p, q) charges of strings are tranformed when crossing branch cuts, the

charges of 7-branes (on which they can end) are also transformed. Thus, the collection of

7-branes corresponding to a given F-theory compactification is unique only up to: (i) braid-

ing operations in which 7-branes are are successively transported through the branch cuts

of other 7-branes and (ii) an overall SL(2, Z) conjugation of all monodromies.7 Examples of

braiding operations can be found in appendix A. The collection of 7-branes (2.1) describing

F-theory on K3 is unique up to these equivalences.

2.4 String junctions and gauge symmetry

Given a collection of N parallel D7-branes, no two coincident, the massive W -bosons for the

spontaneously broken SU(N) worldvolume gauge symmetry are (1, 0) fundamental strings

stretched between the (1, 0) D7-branes. In the presence of an O7-plane, an enhancement

to SO(2N) occurs when the D7-branes are all coincident with the O7-plane. In the per-

turbative description, the additional W -bosons associated with the spontaneous breaking

of SO(2N) (over those of SU(N)) are strings stretched between the D7-branes and the

O7-plane. (On the covering space of the orientifold, these are strings connecting D7-branes

with their Z2 images.) In all cases, the masses of the W -bosons can be attributed to finite

string lengths × finite tensions.

Nonperturbatively, an O7-plane resolves to a B,C pair of (p, q)-branes, so the ad-

ditional W -bosons of SO(2N) should resolve to string junctions stretched between the

D7-branes and a B,C pair. Here, a string junction is a collection of (p, q) string segments,

7An overall SL(2, Z) conjugation can often be achieved by braiding. In this case, the equivalence (ii) is

redundent.
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Figure 5. Massive string junction for the breaking of SO(2N) to SU(N).

such that each segment terminates at either a 7-brane or a vertex. At a vertex, an arbi-

trary number of strings can meet; the only requirement is that the total (p, q) charge of

the (oriented) strings entering the vertex equals the total (p, q) charge leaving the vertex.

From the perturbative description, the natural guess is that an SO(2N) W -boson

realized as a string connecting a single D7-brane to an O7-plane should resolve to a string

junction connecting a single D7 brane to a B,C pair. But, such a junction is impossible

with integer (p, q) and charge conservation at the trivalent vertex. In fact, a perturbative

D7 → O7 string represents half of a root of SO(2N). The D7i → D7i+1 strings span the

root lattice of SU(N). Here, i = 1, 2, . . . , N denotes an ordering of the D7-branes and an

arrow denotes an oriented string stretch between the two objects. Adding the combination(
D7N−1 → O7

)
⊕
(
D7N → O7

)
enlarges the lattice to the root lattice of SO(2N) [48]. The

nonperturbative resolution of the last root is a string junction connecting two D7-branes

to a B and C brane. As shown in figure 5, the two (1, 0) strings emanating from the D7

branes join to form a (2, 0) string; then, the (2, 0) string splits to form a (1,−1) plus a

(1, 1) string, which terminate on the B and C branes.

2.5 Junction lattice

The general formalism was worked out in a series of papers by DeWolfe et al. [15–18].

Given a collection of 7-branes, ordered as in figure 3, we define a lattice of equivalence

classes of string junctions as follows.

First, to each string junction, we associate a lattice vector

Q =
∑

i

Qisi, (2.7)

where Qi ∈ Z is the net number of strings leaving (minus entering) the ith 7-brane X[pi,qi],

and the si for i = 1, . . . , N are a formal basis for a rank N lattice, where N is the number

of 7-branes. We can think of si as an outward oriented (pi, qi) half-string emanating from

X[pi,qi]. Two strings junctions are equivalent if they have the same Q.

Each equivalence class Q can be represented by a junction in standard presentation,

that is, by a tree-graph with trivalent vertices. The nontrivial step in converting a given
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Figure 6. Pushing a string through a 7-brane: the Hanany-Witten effect.

representative to standard presentation is the operation of pushing a string through a

7-brane X[p,q]. This operation is illustrated in figure 6. Below the 7-brane, string charge

conservation requires a discontinuity from z′ =
(p′
q′

)
to z′′ = K[p,q] z

′ across the branch cut.

Above the 7-brane, the discontinuity can only be accounted for by the appearance of a new

string that connects the 7-brane X[p,q] to the point of discontinuity. This is an example of

the Hanany-Witten effect [32].

As required, the new string emanating from X[p,q] has string charge proportional to

z =
(p
q

)
:

(K[p,q] − 1)z′ = (z′ · z)
(

p

q

)
, where z′ · z =

∣∣∣∣∣
p′ p

q′ q

∣∣∣∣∣ = p′q − q′p. (2.8)

The junction lattice J is defined to be the lattice of equivalence classes Q of junctions

together with the inner product,

(si, si) = −1,

(si, sj) = (sj , si) =
1

2
(piqj − pjqi), i < j.

(2.9)

A good way to think about this inner product and the tranformation rule (2.8) is that

they are both related to the antisymmetric intersection pairing (p′, q′) · (p, q) = p′q − q′p

of 1-cycles on the elliptic fiber. To define the symmetric inner product (2.9), we use the

additional structure provided by the ordering of the branch cuts.

On C1 or an open subset of P1, the junction lattice J is the full rank N lattice generated

by the si. However, some of the lattice vectors correspond to junctions with asymptotic

(p, q) charge at infinity. We define the proper junction lattice Jproper to be the sublattice of
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AN AN+1 (N ≥ 1),

DN ANBC (N ≥ 4),

EN AN−1BCC (N = 6, 7, 8),

HN AN+1C (N = 0, 1, 2).

Table 1. A-D-E Lie algebras and the corresponding 7-brane collections.

proper string junctions in which no net charge is carried by strings that run off to infinity,8

∑

i

Qi

(
pi

qi

)
=

(
0

0

)
(proper junction lattice). (2.10)

This constraint means that the rank of Jproper is less than the number of 7-branes by 1

or 2.9

On P1, there is no distinction between the junction lattice and proper junction lattice.

The point at infinity is contained in P1, and a string cannot terminate there unless it is

the location of a 7-brane or vertex. Thus, on P1, we have J = Jproper, of rank less than the

number of 7-branes N .

The root lattices of the A-D-E Lie algebras can each be realized as the proper junction

lattice of collections of A, B and C type 7-branes, as indicated in table 1. (See refs. [15–18]

for further details.)

The proper string junctions of each of these collections are the W -bosons of the cor-

responding gauge symmetry. When the 7-branes coalesce to a point, the W -bosons are

massless and the gauge symmetry is unbroken. In general, a collection of 7-branes can

coalesce if and only if the inner product of the proper junction lattice of the collection is

negative definite. This condition is satisfied for the classical A-D-E Lie algebras with N in

the ranges given in table 1, but not for the more exotic algebras like EN with N > 8.

The HN row of table 1 provides a second way to realize AN gauge symmetry. In

contrast to the perturbative realization via N +1 A branes (D7-branes), the HN realization

is strongly coupled. Likewise, in the moduli space of the N = 2 worldvolume theory

on a D3-brane probe in the presence of a coalesced HN collection of 7-branes, there is

a strongly coupled Argyres-Douglas point [1], at which N + 1 hypermultiplets (of two

mutually nonlocal electromagnetic charges) become massless. The hypermultiplets come

from a (1, 0) string or (1, 1) string stretched between the D3 brane and an A or C brane,

respectively.

In terms of the elliptic fibration, string junctions lift to 2-cycles in X . A junction in

standard presentation (i.e., a tree graph) lifts to a 2-cycle that is topologically S2. As

mentioned earlier, the 2-cycle is obtained by fibering the circle S1
p,q ⊂ T 2 over each (p, q)

string segment in P1 (see figure 7). The 2-cycle smoothly pinches off at the locations of

the singular fibers, at which an S1 shrinks to zero size. The junction inner product (2.9)

8Eq. (2.10) gives a homomophism from Span({si}) ∼= ZN to the Z2 of (p, q) string charges. The proper

junction lattice is the kernel of this homomorphism.
9For example, for a collection of D7 branes only, eq. (2.10) gives only 1 constraint since qi = 0 for all i.

For a collection that spans the Z2 of possible (p, q), there are 2 constraints.
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Figure 7. Lift of SU(N) roots and the additional roots of SO(2N) from string junctions stretched

between 7-branes in type IIB to 2-cycles in X .

Coalescing collection Kod. type Number of components Intersection matrix

— — I0 1 (elliptic) 0

AN−1 (AN ) IN N (N distinct intersect. pts.) affine AN−1

DN+4 (AN+4 BC) I∗N N + 5 affine DN+4

E6 (A5BCC) IV∗ 7 affine E6

E7 (A6BCC) III∗ 8 affine E7

E8 (A7BCC) II∗ 9 affine E8

H0 (AC) II 1 (with cusp) 0

H1 (A2C) III 2 (meet in one pt. of order 2) affine A1

H2 (A3C) IV 3 (all meet in 1 pt.) affine A2

Table 2. Coalescing collections of I1 fibers and Kodaira type of the resulting singular fiber.

reproduces the standard intersection pairing on H2(X ). The statement that a collection of

7-branes can coalesce to a point on P1 only for negative definite inner product reproduces

the standard result that a collection of 2-cycles can be collapse to zero size only for negative

definite intersection matrix.

Finally, coalescing (p, q) 7-branes in type IIB correspond to coalescing I1 singular fibers

in X . The relation between the choice of coalescing collection (in terms of A, B and C type

I1 fibers) and the Kodaira type of the resulting singular fiber is shown in table 2, [5, 57].

The table also indicates the number of irreducible components of the resulting singular

fiber and the intersection matrix of these components.

2.5.1 Junction lattice of 1
2K3 = dP9

The simplest nontrivial choice of the Calabi-Yau manifold X is an elliptic K3 surface. In

this case, we can simplify matters further by considering the stable degeneration limit, in

which the base degenerates to two P1s meeting at a point, and K3 factorizes into two dP9
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surfaces10 meeting in an elliptic curve. Via duality to the E8 × E8 heterotic string, each

dP9 corresponds to a single E8 factor, so we can focus on a single dP9.

As an elliptic fibration, a generic smooth dP9 has 12 singular fibers of type I1. Up to the

equivalences discussed in appendix A (braiding and SL(2, Z) conjugation), the collection

of singular fibers is A8BCBC — exactly half of the corresponding collection (2.1) for K3.

The total monodromy about all singular fibers is again unity, as required,

(
KCKB

)2
KA

8 = 1. (2.11)

The junction lattice of dP9 was analyzed in great detail in ref. [23]. For a smooth dP9

with 12 I1 fibers, the junction lattice is the semidefinite lattice

J = E−
8 ⊕ Zδ1 ⊕ Zδ2, (2.12)

the direct sum of the E−
8 lattice (where the minus indicates that the inner product is minus

that of the E8 root lattice) and a 2D null lattice generated by the charge vectors

δ1 = (0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 1, 1),

δ2 = (−1,−1,−1,−1,−1,−1,−1,−1, 7, 5,−3,−1).
(2.13)

By brane motions (the braiding operations of appendix A), A8BCBC ∼= A7BCCX[3,1]A.

The E−
8 is then generated by the proper junctions of A7BCC. The null vectors δ1 and

δ2 have the following interpretation. They can each be represented by a loop junction, a

counterclockwise loop of (p, q) strings circling all of the the 7-branes. (See figure 8 below.)

Since the total monodromy is unity, a (p, q) string starting above all of the branch cuts

comes back again to a (p, q) string after traversing the complete loop. So, it can close. Such

a loop is contractible to the point at infinity and is in this sense trivial.11 For (p, q) = (1, 0)

and (0, 1), we obtain the charge vectors δ1 and δ2, respectively. In order to obtain the

charge vectors quoted in eq. (2.13), it is necessary to convert the loop junction to standard

tree presentation by “pushing strings through vertices” using the Hanany-Witten effect, as

described in section 2.5.

2.5.2 Mathematical interpretation of the junction lattice

In this section, we establish terminology for variety of lattices related to the junction

lattice J , and then relate these lattices to the homology of the elliptic fibration. (See

eq. (2.7)) and (2.9) for the definition of the junction lattice.)

1. The null junction lattice Jnull ⊂ J is the null sublattice of the junction lattice.

10A dP9 is a rational elliptic surface: rational, since it is the blow-up of P2 in nine points, and elliptic,

since it admits an elliptic fibration over P1. The sections are the nine blow-up P1s and the elliptic fiber is

represented by the canonical class K = −3H +
P9

i=1 Ei, with K2 = 0. Here, H is the hyperplane class of

P2 and Ei is the class of the ith exceptional P1.
11Likewise, the 2-cycle in X obtained by fibering an S1 over this loop is a homologically trivial T 2 in X .
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Figure 8. A loop junction, contractible to the point at infinity. The null generators δ1 and δ2 are

obtained for (p, q) = (1, 0) and (0, 1), respectively.

2. The loop junction lattice Jloop ⊂ Jnull is the null sublattice generated by loop junctions

circling all 7-brane locations (locations of singular fibers) on P1 and contractible to

the point at infinity.12

3. The effective junction lattice is the quotient

Jeff = J/Jloop. (2.14)

We have just seen that the effective junction lattice of a smooth dP9 is Jeff (dP9) =

E−
8 .

4. The Kodaira junction lattice JKodaira is the sum of the proper junction sublattices

associated to each of the collections of coalescing 7-branes. It is trivial for a smooth

surface, where all singular fibers are of type I1, but nontrivial when a collection of

7-branes has coalesced and the elliptic fibration acquires a multicomponent Kodaira

fiber, as in table 2.

5. The tadpole junction lattice is

J0 = J⊥
Kodaira ≡ orthogonal complement of JKodaira in Jeff . (2.15)

For a smooth surface, J0 = Jeff . The reason for the terminology is that the sublattice

orthogonal to the proper junctions associated to a subcollection of coalescing branes

can be represented by junctions that are tree graphs away from the collection, with

a possible termination in a tadpole loop circling the collection (cf. figures 9 and 10).

In section 2.6, we will also define weakly integral analogs of these lattices.

Let us describe the homological interpretation of the various lattices just defined. First

consider an arbitrary elliptic fibration π : X → B. The existence of the projection π induces

12For a compact elliptic surface, there is no torsion in the Néron-Severi lattice (the algebraic part of

H2(X ,Z)), and no distinction between Jloop and Jnull. However, it is useful to introduce the extra ter-

minology here, so that it will carry over to abelian surface fibrations without alteration. As we will see,

Jloop 6= Jnull for the abelian surface fibrations Xm,n with m 6= 1 discussed in section 3.
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a filtration on the cohomology that allows us to write [2, 28].13

H2(X , Z) = H2(B, Z) ⊕ H1(B, R1π∗Z) ⊕ H0(B, R2π∗Z). (2.16)

Here, Hp(B, Rqπ∗Z) can roughly be thought of as the cohomology of degree p along the

base and q along the fiber.14 We have contributions:

1. H2(B, Z) from the base,

2. H0(B, R2π∗Z) from the generic fiber and extra components of reducible fibers,

3. H1(B, R1π∗Z) from everything else.

Now restrict to an elliptic surface X . The string junctions of the previous section are

real 1D graphs on B that lift to 2-cycles in X by fibering an S1 ⊂ T 2 over each segment of

the graph. Thus we might expect that they are related to H1(B, R1π∗Z). Indeed, this is

the interpretation of the tadpole junction lattice given in ref. [23],

J0 = H1(B, R1π∗Z). (2.17)

Likewise,

H0(B, R2π∗Z) = JKodaira ⊕ F Z, (2.18)

where F is the generic fiber.

The group of rational sections of an elliptic fibration is known as the Mordell-Weil

group MW. The narrow Mordell-Weil group MW0 is the subgroup of sections that intersect

the same components of singular fibers as the zero section σ0. In general [2, 13, 23],

MW0(X ) = H1(B, R1π∗Z) ∩ H1,1(X , C). (2.19)

For dP9, the intersection removes nothing, and MW0 = H1(B, R1π∗Z) = J0, where J0 =

E−
8 from the previous section. This is the situation to keep in mind for the generalization

to abelian surface fibered Calabi-Yau manifolds in section 3, where again H2,0(X ) = 0. On

the other hand, for X an elliptic K3, H2,0 6= 0, and the intersection with H1,1 depends on

the choice of complex structure moduli.15

The junction description of the full Mordell-Weil group MW and its torsion subgroup

MWtor will be given in section 2.6, once we have introduced the notion of weak integrality.

13To be precise, eq. (2.16) is not literally correct as written. There exists a filtration, but additional

assumptions are necessary for the sequence to split as shown. For a further discussion, see appendix H.
14The sheaf Rqπ∗Z on B associates the group Hq(π−1(U), Z) to each open set U ⊂ B. For U a neigh-

borhood of a generic point x ∈ P1 this becomes the cohomology group Hq(fx, Z) along the elliptic fiber

fx = π−1(x), modulo monodromy equivalences. See appendix H for further background on Rqπ∗.
15For an elliptic K3, H1(B, R1π∗Z) = E−

10 ⊕ E−
10 is a signature (2, 18) sublattice of H2(K3, Z), which

when combined with σ0, f gives the full H2 lattice [18]. On the other hand MW0 varies from rank 0 to 16

depending on complex structure.
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2.5.3 An example with coalesced 7-branes

We now turn to an example in which some of the 7-branes (I1 fibers of X ) have coa-

lesced. For simplicity, we start again with dP9. From the braiding operations discussed in

appendix A, we have

A8 BCBC ∼= A4 BCA2 BCA2 ∼= A4 BA2BBA2B ∼= A4 B2D2 B2D2, (2.20)

where D = X[0,1]. We adopt the last collection A4B2D2B2D2 for this example.

In the basis corresponding to this collection, the null loop junctions of section 2.5

become

δ1 = (0, 0, 0, 0,−1,−1,−1,−1, 1, 1, 1, 1),

δ2 = (−1,−1,−1,−1, 3, 3,−2,−2,−1,−1, 0, 0),
(2.21)

from loops with (p, q) = (1, 0) and (0, 1), respectively. In our collection, adjacent branes of

the same type can coalesce. We will use surrounding parentheses to denote subcollections

of coalesced branes. Thus,

(A2)(A2)(B2)(D2)(B2)(D2), with JKodaira = A−
1

⊕6, (2.22)

denotes a brane collection in which all branes have coalesced pairwise. In the elliptic

fibration of the dP9, the twelve I1 fibers have coalesced pairwise to become six I2 fibers,

each giving an A1 surface singularity. The Kodaira junction lattice is A−
1

⊕6, generated by

(p, q) strings that connect the two 7-branes in each pair:

α1 = s1 − s2, α2 = s3 − s4, α3 = s5 − s6,

α4 = s7 − s8, α5 = s9 − s10, α6 = s11 − s12.
(2.23)

Here, A−
1 denotes a lattice whose inner product is minus that of the A1 root lattice.

The tadpole junction lattice J0 = J⊥
Kodaira ⊂ Jeff is generated by tadpole junctions

modulo null loops. Recall that tadpole junctions terminate at noncoalesced branes and/or

at tadpole loops circling coalesced branes.16 It is meaningful to quotient by null loops since

the null junctions (2.21) can also be represented by tadpole junctions. For example, δ2 is

shown in figure 9. Tadpole junctions representing the lattice vectors

β1 = s1 + s2 − s3 − s4,

β2 = s5 + s6 − s9 − s10,
(2.24)

16Instead of the tadpole terminations, we can alternatively push the tadpole loops through branch points

to obtain terminations at coalesced branes. Note however, that in the full junction lattice, the charge vector

of the resulting junction diagram is ambiguous. For example, a (2,0) string terminating on a coalesced (A2)

pair might have the junction charges of a (1,0) string terminating on each A, or a (2, 0) string terminating on

one of them. A tadpole termination makes it unambigous that we mean the former (by a small deformation

of the coalesced brane locations). This ambiguity disappears once we restrict to the tadpole junction lattice,

where the only charges permitted are those corresponding to the tadpole terminations.
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Figure 9. The null junction δ2 represented as a tadpole junction.
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Figure 10. Tadpole junctions β1 and β2.

are shown in figure 10. Together, β1 and β2 span the tadpole junction lattice of the

collection (2.22):17

J0 = β1Z ⊕ β2Z = A−
1

⊕2. (2.25)

This lattice is isomorphic to the narrow Mordell-Weil lattice MW0 of the corresponding

singular elliptic dP9 with six I2 fibers.

2.6 Weakly integral junction lattice and torsion sections

In the presence of coalesced branes, there exists a natural extension of the junction lattice

J known as the weakly integral junction lattice Jweak [23]. So far we have considered only

physical string junctions in which the string charges (p, q) of each segment are integral.

A weakly integral string junction is a string junction in which we relax the integrality

requirement on the strings in tadpole loops, requiring only that the string charge entering

or leaving a tadpole termination be integral. For example, consider a dP9 surface. From

the junctions in figures 9 and 10, we obtain the weakly integral junctions δ2/2, β1/2, and

β2/2 shown in figures 11 and 12.

17A similar junction joining the two (D2)’s in figure 10 differs from β2 by δ1, so it is not linearly

independent.
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Figure 11. The weakly integral null junction δ2/2.
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Figure 12. Weakly integral tadpole junctions β1/2 and β2/2.

Now return to the case of a general elliptic surface. In addition to Jweak, we define

the related junction lattices Jweak
null , Jweak

eff , Jweak
Kodaira and Jweak

0 . The definitions are straight-

forward analogs of those in section 2.5.2, with the possible exception of loop junction

sublattice, which is defined to be the same in either case: Jweak
loop = Jloop.

The full Mordell-Weil group and its torsion subgroup are determined by the various

junction lattices as follows [23]:

MW = Jweak
0 (weakly integral tadpole junctions mod loops), (2.26)

MWtor = Jweak
null /Jloop (weakly integral null junctions mod loops). (2.27)

When the Néron-Severi lattice18 NS(X ) of the elliptic surface is unimodular, the Mordell-

Weil lattice MW/MWtor is MW ∗
0 = J∗

0 , the dual lattice of the narrow Mordell-Weil lattice

and tadpole junction lattice. In particular, this is the case for dP9.

18The Néron-Severi lattice is the lattice of algebraic divisors modulo algebraic equivalence. For a compact

elliptic surface X , the Néron-Severi lattice is torsion free; under the isomorphism H2(X , Z) ∼= H2(X , Z), it

is the sublattice of H2(X , Z) identified with H2(X ,Z) ∩ H1,1(X ,C).
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In the singular dP9 example above, J0 = A1
⊕2, so MW/MWtor = A∗

1
⊕2. The weakly

integral null lattice is

Jweak
null = (δ1/2)Z ⊕ (δ2/2)Z, (2.28)

so MWtor = Jweak
null /Jloop = Z2 ⊕ Z2, generated by δ1/2 and δ2/2.

For a more complete and very readable exposition on the relation between string

junctions and the Mordell-Weil lattice, the reader is referred to ref. [23], in which the

Oguiso-Shioda classification of the Mordell-Weil lattices of dP9 is reproduced entirely in

the junction framework.19 As emphasized in ref. [23], MWtor has physical consequences.

Whereas the gauge algebra on a collection of coalescing 7-branes is determined by its root

lattice, and hence by JKodaira, the group MWtor determines π1 of the global gauge group.

3 Monodromy and junction description of CY duals of T 6/Z2

3.1 The duality map

In ref. [46], it was shown that type IIB T 6/Z2 orientifold with a choice of flux preserv-

ing N = 2 supersymmetry is dual to a class of purely geometrical type IIA Calabi-Yau

compactifications with no flux. The dual Calabi-Yau manifolds Xm,n are abelian surface

fibrations over P1. They bear a number of similarities to the elliptic fibrations over P1

described in section 2. In this section, we will provide a similar monodromy and junction

based description of the topology of Xm,n and its geometry of curves.

To see why the IIA dual geometry is a T 4 fibration, first recall that in the absence of

flux, we have the N = 4 duality,

T 6/Z2 orientifold ↔ IIA on K3 × T 2

(where K3 = T 2 fibration over P 1).
(3.1)

Here, note that K3×T 2 can be viewed as T 4 fibration over P1, where a T 2 ⊂ T 4 trivially

factorizes. This duality can be understood in several ways. Two are as follows.

1. Via heterotic/IIA duality: The IIB T 6/Z2 orientifold ↔ type I on T 6 (by T-duality)

↔ heterotic SO(32) on T 6 (by S-duality) ↔ heterotic E8 × E8 on T 6 (by T-duality)

↔ IIA on K3×T 2 (by heterotic/IIA duality).

2. Via M-theory: First T-dualize T 6/Z2 on a T 3 to obtain the IIA T 3/Z2 × T 3 D6/O6

orientifold. This is dual to type IIA on K3×T 2 via a circle swap: The IIA orientifold

lifts to M-theory on K3×T 3, where the K3 ∼= T 4/Z2 comes from the lift of the T 3/Z2

factor. Then compactifying on an S1 in the T 3 factor gives IIA on K3×T 2.

The modification of the duality (3.1) due to N = 2 flux is as follows:

T 6/Z2 orientifold ↔ IIA on a Calabi-Yau Xm,n

(where Xm,n = T 4 fibration over P 1).
(3.2)

19Indeed, ref. [23] even caught a two errors in Oguiso and Shioda’s list of Mordell-Weil groups of dP9 [40].
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The flux dualizes to twists of the topology that: (i) mix the previous T 2 factor with the

T 2 fiber of K3, and (ii) require a reduction in the number of exceptional divisors from the

16 that would be associated with K3 to a smaller number M < 16. On the T 6/Z2 side of

the duality, the integers m and n parametrize the choice of flux

FRR = 2m(dx1 ∧ dy1 + dx2 ∧ dy2) ∧ dy3,

HNS = 2n(dx1 ∧ dy1 + dx2 ∧ dy2) ∧ dx3,
(3.3)

and M is the number of D3-branes.

In ref. [46], this duality was studied by mapping the family of classical 10D type IIB

supergravity solutions through the duality chain 2 above. The resulting description of Xm,n

includes an explicit metric that is valid to leading order in the relative Kähler modulus h/s

(fiber size/base size). The harmonic forms in the metric can also be given explicitly. For

h/s ≪ 1 the metric is a good approximation everywhere except near the singular loci of a

subset of the singular fibers (the Bi,Ci fibers of section 3.3).

3.2 Known properties of type IIA Calabi-Yau duals Xm,n

A summary of the results obtained in ref. [46] is as follows:

1. Xm,n is an abelian surface (T 4) fibration over P 1, with 8 + M singular fibers, where

M is number of D3-branes in T 6/Z2.

2. The Hodge numbers of Xm,n are h11 = h21 = M + 2, where m, n, and M are

constrained by

M + 4mn = 16. (3.4)

This is the D3 charge cancellation condition ND3 +
∫

H ∧ F = NO3 on T 6/Z2 with

ND3 = M and NO3 = 16.

3. The generic Mordell-Weil lattice of sections (mod torsion) of Xm,n is DM . Here,

generic means that all fibers are topologically I1 × T 2. This was not mentioned

explicitly in ref. [46], but follows from the fact that M D-branes plus an O-plane can

coalesce to give SO(2N) enhanced gauge symmetry in T 6/Z2. It also follows from

consideration of D3 instantons in T 6/Z2 [25].

4. The fundamental group and isometry group of Xm,n are

π1 = Zn × Zn and MWtor = Zm × Zm, (3.5)

corresponding to a disrete KK gauge symmetry and discrete winding gauge symmetry,

respectively. This follows from the fact that the flux parametrizes a gauging of the

low energy N = 4 supergravity theory of T 6/Z2 (i.e., the charges coupling scalars to

vectors). For nonminimal flux (m,n) 6= (1, 1), the resulting superHiggs mechanism

down to N = 2 only partially breaks four of the U(1)s of T 6/Z2, leaving the discrete

gauge symmetry (3.5).
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5. The polarization of the abelian fiber is (m̄, n̄) = (m,n)/ gcd(m,n). This means that

the Kähler form on the fiber is proportional to a Hodge form

ω = n̄dy1 ∧ dy2 + m̄dy3 ∧ dy4, (3.6)

a positive integer form that can be used to define a projective embedding.

6. The interchange m ↔ n corresponds to T-duality of the T 4 fiber. For m = 1, this

interchange can be achieved as a quotient by the isometry group,20

X1,m = Xm,1/
(
Zm × Zm

)
. (3.7)

7. In a convenient basis, the nonzero intersection numbers are

H2 · A = 2m̄n̄, H · EI · EJ = −m̄δIJ , (3.8)

where A is the abelian fiber. These were deduced from the explicit harmonic forms

in the approximate Calabi-Yau metric.

8. The only nonzero intersection with the second Chern class of Xm,n is

H · c2 = 8 + M. (3.9)

This follows from the F1 topological amplitude of T 6/Z2, which to leading order is

determined by the Green-Schwarz mechanism.

Properties 1, 5, and 6 were deduced using the existence of an approximate metric on the

type IIA Calabi-Yau manifold Xm,n that is exactly dual to the leading order supergravity

description of the type IIB T 6/Z2 orientifold:

9. The approximate metric is twisted product of a Gibbons-Hawking metric and a T 2

metric,

ds2
CY = Z

( vB

Im τ

∣∣dy5 + τdy6
∣∣2 + R2

2
(
dy2
)2)

+ Z−1R1
2
(
dy1 + A1

)2

+
vF

Im τ

∣∣η3 + τη4
∣∣2, R1R2 = (n/m)vF ,

(3.10)

modulo Z2(y
1,2,5,6), where vF and vB are the fiber and base Kähler moduli, respec-

tively. The factor Z satisfies a Poisson equation on T 3
{2,3,4}.

21

− For m,n = 0, the first line (the Gibbons-Hawking part) approximates a K3 metric,

and the second line is a T 2 metric.

− For m,n 6= 0, the two pieces are twisted:

dA1 = R1 ⋆3 dZ − 2m
(
η3 ∧ dy6 − η4 ∧ dy5

)
,

dη3 = 2ndy2 ∧ dy5, dη4 = 2ndy2 ∧ dy6.
(3.11)

Since the right hand side of eq. (3.11) vanishes at fixed y5, y6, we can interpret the

metric as that of a T 4
{1,2,3,4} fibration over T 2

{5,6}/Z2
∼= P1.

20In the m = 4 case, one can also quotient in two steps: X2,2 = X4,1/
`

Z2 × Z2

´

, X1,4 = X2,2/
`

Z2 × Z2

´

,

where the Z2 × Z2 is a subgroup of Z4 × Z4 in the first step, and is the quotient group in the second step.
21It is the same as the warp factor of the T 6/Z2 orientifold, averaged over the three T-dualized directions

transverse to T 3
{2,3,4}.
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3.3 Monodromy matrices for the abelian surface fibrations

In section 2, we saw that the topology of an elliptic K3 or dP9 was determined by a branch-

cut-ordered set of points on P1 and the corresponding SL(2, Z) monodromy matrices that

determine how the coordinates and 1-forms on T 2 are to be identified across branch cuts. In

the type IIB description, the choice is interpreted as that of a collection of (p, q) 7-branes.

Likewise, the topology of Xm,n can be defined by giving an ordered set of points on

the P1 base and corresponding SL(4, Z) monodromies22 acting on T 4. And, we can again

determine this information explicitly via the duality to T 6/Z2. In appendix D, it is shown

that the M D3-branes (plus orientifold planes) of T 6/Z2 map to a collection

AMB1C1B2C2B3C3B4C4 (3.12)

of singular T 4 fibers of Xm,n. The explicit monodromy matrices are

KA =




1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , (3.13)

from the M D-branes in T 6/Z2, and

KC1 =




2 −1 0 m

1 0 0 m

−n n 1 −mn

0 0 0 1


 ,

KC2 =




2 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


 ,

KC3 =




2 −1 −m 0

1 0 −m 0

0 0 1 0

−n n mn 1


 ,

KC4 =




2 −1 −m m

1 0 −m m

−n n 1 + mn −mn

−n n mn 1 − mn


 ,

KB1 =




0 −1 0 −m

1 2 0 m

−n −n 1 −mn

0 0 0 1


 ,

KB2 =




0 −1 0 0

1 2 0 0

0 0 1 0

0 0 0 1


 ,

KB3 =




0 −1 m 0

1 2 −m 0

0 0 1 0

−n −n mn 1


 ,

KB4 =




0 −1 m −m

1 2 −m m

−n −n 1 + mn −mn

−n −n mn 1 − mn


 .

(3.14)

Note that

KA = (previous KA) ⊕ (identity) on T 2 × T 2, (3.15)

22A collection of SL(4, Z) monodromies defines a T 4 fibration. This T 4 fibration is an abelian surface fi-

bration, if there also exists a monodromy invariant Hodge form ω. Alternatively, if ω is specified beforehand,

the monodromy matrices must lie in the subgroup Sp(ω,Z) ⊂ SL(4, Z) that preserves ω.
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Singular locus (smooth T 2)

Singular fiber Vanishing cycle Location of singular locus spanning cycles

A (1, 0, 0, 0) y2 = c (0, 0, 1, 0), (0, 0, 0, 1)

B1 (1,−1, n, 0) y1 + y2 + my4 = c (0, 0, 1, 0), (−m, 0, 0, 1)

C1 (1, 1,−n, 0) y1 − y2 + my4 = c (0, 0, 1, 0), (−m, 0, 0, 1)

B2 (1,−1, 0, 0) y1 + y2 = c (0, 0, 1, 0), (0, 0, 0, 1)

C2 (1, 1, 0, 0) y1 − y2 = c (0, 0, 1, 0), (0, 0, 0, 1)

B3 (1,−1, 0, n) y1 + y2 − my3 = c (m, 0, 1, 0), (0, 0, 0, 1)

C3 (1, 1, 0,−n) y1 − y2 − my3 = c (m, 0, 1, 0), (0, 0, 0, 1)

B4 (1,−1, n, n) y1 + y2 − my3 + my4 = c (m, 0, 1, 0), (−m, 0, 0, 1)

C4 (1, 1,−n,−n) y1 − y2 − my3 + my4 = c (m, 0, 1, 0), (−m, 0, 0, 1)

Table 3. Structure of the singular A, Bi, and Ci fibers of the abelian surface fibration Xm,n.

but

KBi
= (previous KB) ⊕ (identity) on T 2 × T 2 + m,n twists,

KCi
= (previous KC) ⊕ (identity) on T 2 × T 2 + m,n twists,

(3.16)

where the m,n dependent twists in KBi
,KCi

mix T 2
y1y2 and T 2

y3y4 and differ for i = 1, 2, 3, 4.

These monodromies uniquely determine the topology of Xm,n, and preserve the Hodge

form (3.6).

The topology of a singular A fiber consists of a smooth T 2
y3y4 times an I1 type degen-

eration of T 2
y1y2 in which the y1-circle shrinks to zero size at a point on the y2-circle.23

The singular locus is the smooth T 2
y3y4 at the location of the singularity on T 2

y1y2 . The

Bi and Ci monodromies are related to KA by similarity transformations TKAT−1, as de-

scribed in appendix D. So, the singular Bi and Ci fibers are of the same type, except that

decomposition into singular and smooth T 2 differs in each case.

On the T 4 fibers, the analog of the (p, q) 1-cycles of H1(T
2) in section 2 is the group

of (p, q, r, s) 1-cycles of H1(T
4). For each A, Bi and Ci singular T 4 fiber, table 3 lists the

vanishing 1-cycle, the location of the singular locus, and a pair of nonvanishing 1-cycles

spanning the singular locus (which is a smooth T 2). The vanishing 1-cycle and spanning

cycles of the singular locus are invariant under the monodromy action associated to the

singular fiber. In table 3, the spanning cycles of the smooth T 2 are defined only modulo

the vanishing cycle, and represent one choice out of many possible bases. Note that in

contrast to the T 2 fibered case, specifying the vanishing cycle does not uniquely determine

the SL(4, Z) monodromy. The singular locus must also be specified.

3.3.1 Fundamental group

The vanishing cycles in table 3 are trivial in H1(Xm,n, Z). By taking linear combinations,

we deduce that the cycles (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, n, 0) and (0, 0, 0, n) ∈ H1(Xm,n, Z) are

23While the singular fibers have I1×T 2 topology, the complex structure need not respect this factorization.

A description of the complex structure of the singular fibers is given in section 4.1.

– 24 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
9

trivial, and generate all trivial cycles. Thus, (0, 0, 1, 0) and (0, 0, 0, 1) generate Zn torsion

cycles, and

H1(Xm,n, Z) = Zn × Zn. (3.17)

Provided that π1(Xm,n) is abelian,24 this implies that π1 = Zn × Zn, in agreement with

the result (3.5) obtained from the low energy effective field theory of T 6/Z2. Indeed,

the inclusion A →֒ Xm,n induces a surjective map from π1(A) to π1(Xm,n); that is, every

nontrivial element of π1(Xm,n) can be deformed to lie entirely in the abelian fiber over a

single point of the base. So, π1(Xm,n) is abelian.

3.3.2 Calabi-Yau dual interpretation of T 6/Z2 RR tadpole

Since the base of Xm,n is P1, a loop that encloses all singular fibers is contractible (to the

point at infinity). Therefore, as in section 2, the total monodromy must be unity. This

gives

1 = Ktotal

= KC4KB4KC3KB3KC2KB2KC1KB1KA
M

=




1 0 0 0

1 −Q 0

1 0

1


 , where Q = M − 16 + 4mn,

(3.18)

so that Q = 0. The topological constraint Ktotal = 1 reproduces the T 6/Z2 D3 charge

cancellation condition (3.4).

3.4 Mordell-Weil lattice from junction lattice

For an abelian surface fibration, we define the junction lattice J and related lattices Jloop,

Jeff , JKodaira, and J0 exactly as in section 2, except that we now consider graphs on P1

in which each oriented string: (i) is labeled by four charges (p, q, r, s), instead of two, and

(ii) can terminate either at a vertex or at the location of a singular X[p,q,r,s] fiber in which

a (p, q, r, s) 1-cycle shrinks.

To define the equivalence classes of junctions, we let si denote an outward oriented

(pi, qi, ri, si) string emanating from X[pi,qi,ri,si]. Then, to each string junction in standard

(tree) presentation, we associate a charge vector

Q =
∑

i

Qisi, (3.19)

where Qi ∈ Z is the net number of strings leaving (minus entering) the location of the

ith singular fiber, X[pi,qi,ri,si]. In this case, we treat the strings as strictly mathematical

objects, in contrast to the physical IIB strings of section 2.25

24In general, H1(X , Z) is the abelianization of π1(X ), i.e., π1 modulo its commutator subgroup.
25What carries over directly is the interpretation of a (p, q, r, s) string as the projection to P1 of a 2-cycle

in the abelian fibration, whose inverse image at each point is a (p, q, r, s) 1-cycle in the abelian fiber. So,

from the M-theory perspective, these string graphs have an analogous physical interpretation to the (p, q)

string of type IIB: they are M2-branes wrapped on (p, q, r, s) cycles of the fiber of Xm,n.
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To apply the inner product of section 2, we use the fact that an abelian surface fibration

admits a projective embedding, with corresponding Hodge form ω. The Poincaré dual

divisor class can be represented as the sum of positive integer multiples of two T 2s.26 So,

we can first intersect with Hodge class and then use the inner product (2.9) on each T 2.

For the abelian surfaces fibration Xm,n, the Hodge form ω was given in eq. (3.6). As a

check, it can be readily verified that ω is invariant under the monodromies (3.13) and (3.14).

In this case, the Poincaré dual divisor class can be represented by m̄T 2
y1y2 + n̄T 2

y3y4 , and

the charges (pi, qi, ri, si) have a corresponding decomposition (pi, qi) ⊕ (ri, si). We define

the inner product to be

(si, si) = −1,

(si, sj) = (sj, si) =
m̄

2

(
piqj − pjqi

)
+

n̄

2

(
risj − rjsi

)
, i < j.

(3.20)

For the vanishing cycles (pi, qi, ri, si) listed in table 3, the nonvanishing contribution to this

inner product comes entirely27 from the first T 2:

(si, si) = −1,

(si, sj) = (sj, si) =
m̄

2

(
piqj − pjqi

)
, i < j.

(3.21)

However, the (ri, si) data still show up in the junction lattice via the (p, q, r, s) charge

conservation conditions at vertices and the terminination conditions at the locations of

singular fibers.

For the collection (3.12), with no coalesced 7-branes, the resulting junction lattice is

J = Dm̄−
M ⊕ Jnull, where Jnull = δ1Z ⊕ δ2Z ⊕ δ3Z ⊕ δ4Z. (3.22)

In the first term, the superscript indicates that the (positive definite) inner product is −m̄

times the inner product of the root lattice of DM . The DM is generated by the proper

junction lattice of AMBiCi, for any one choice of i, just as in the elliptically fibered case

(cf. refs. [15, 16]). However, unlike the case of an elliptic K3 or dP9 in section 2, we do not

obtain an EM+1 lattice from the proper junctions of AMBiCiCj. The fact that Ci and

Cj have different (p, q, r, s) for i 6= j means that the analog of the EM+1 enhancing root

does not exist for this abelian fibration.

The lattice Jnull in eq. (3.22) is the null sublattice of the junction lattice. A basis of

26In fact, one of the two integers must be unity (cf. appendix B.) This is indeed the case for the possible

values of (m̄, n̄) of Xm,n.
27This statement, while true, is not obvious. For example, if the base were noncompact, then the inner

product between a (1,−1, n, 0) string leaving a B1 point and a string leaving a B3, C3, B4 or C4 point

would have a contribution from the second term in eq. (3.20). However, it can be shown that the inner

product between proper string junctions with no asymptotic (p, q) charge would not. In the compact case,

the only junctions are the proper junctions.
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generators is

δ1 = (0M ; −1,−1; 1, 1; −1,−1; 1, 1), (3.23)

δ2 = ((−1)M ; M − 1, M − 3; 5 − M, 7 − M ; M/2 − 1, M/2 − 3; −3,−1), (3.24)

δ3 = (0M ; 0, 0; 0, 0; 1, 1, −1,−1), (3.25)

δ4 = (0M ; −1,−1; 2, 2; −2,−2; 1, 1). (3.26)

In appendix E, we compute the lattice Jloop generated by null loop junctions. We find

Jloop = δ1Z ⊕ δ2Z ⊕ mδ3Z ⊕ mδ4Z, (3.27)

corresponding to loops with (p, q, r, s) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1),

respectively. Therefore, the effective junction lattice is

Jeff = J/Jloop = Dm̄−
M ⊕ δ3Zm ⊕ δ4Zm. (3.28)

Finally, JKodaira is trivial, since there are no coalesced branes. Therefore, J0 = Jeff , and

there is no distinction between integral and weakly integral junctions. We have

MW = MW0 = J0 = Dm̄−
M ⊕ Zm̄ ⊕ Zm̄,

MWtor = Jnull/Jloop = Zm̄ ⊕ Zm̄,
(3.29)

exactly as predicted via effective field theory considerations in ref. [46].

Note that the narrow Mordell-Weil lattice MW0 has torsion. This distinguishes abelian

surface fibrations from elliptic fibrations over P1, where such torsion cannot occur. (In

terms of the junction lattices, Jnull = Jloop for elliptic surfaces.)

In fact, it is easy to identify the torsion sections explicitly. The sections

δ3
∼= {(y1, y2, y3, y4) = (0, 0, 1

m , 0) in Xm,n} (mod loops δ1, δ2,mδ3,mδ4),

δ4
∼= {(y1, y2, y3, y4) = (0, 0, 0, 1

m) in Xm,n} (mod loops δ1, δ2,mδ3,mδ4),
(3.30)

are invariant under the monodromy actions (3.13) and (3.14) up to the identifications

yi ∼= yi + 1.

3.5 Examples with coalesced fibers

We now consider three examples of collections with coalesced fibers. In the first example,

we assume that M = 16 − 4mn ≥ 4 and obtain an enhancement of MWtor(Xm,n) from

Zm⊕Zm to Z2m⊕Zm. In the next two examples, we restrict to the principally polarized case

(m,n) = (1, 1). We identify collections leading to Z2
⊕4 and Z4 ⊕Z2

⊕2 torsion, respectively.

In section 3.6, we describe how new abelian surface fibered Calabi-Yau manifolds can be

obtained by quotienting by these isometry groups.
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3.5.1 Z2m ⊕ Zm torsion, m = 1, 2, 3

From the braiding operations discussed in appendix A, we have

AM B1C1 B2C2 B3C3 B4C4
∼= AM−4 B1C1 B2C2 B3C3A

2 B4C4A
2

∼= AM−4 B1C1 B2C2 B3A
2B3 B4A

2B4

∼= AM−4 B1C1 B2C2 B3
2D3

2 B4
2D4

2,

(3.31)

where the Di are defined in appendix A and have vanishing cycles of the form (0, 1, ∗, ∗).
In the basis corresponding to the last collection of eq. (3.31), the generators (3.23) of Jnull

become

δ1 =
(
0M−4; −1,−1; 1, 1; −1,−1,−1,−1; 1, 1, 1, 1

)
,

δ2 =
(
1M−4; M − 5,M − 7; 9 − M, 11 − M ; (5 − M/2)2, (M/2 − 6)2; (−1)2, 02

)
,

δ3 =
(
0M−4; 0, 0; 0, 0; m,m,m,m; −m,−m,−m,−m

)
,

δ4 =
(
0M−4; −m,−m; 2m, 2m; −2m,−2m,−2m,−2m; m,m,m,m

)
.

(3.32)

The loop junction lattice Jloop is given by eq. (3.27).

Now, suppose that we coalesce 7-branes pairwise to obtain the collection

AM−4 B1C1 B2C2 (B3
2) (D3

2) (B4
2) (D4

2). (3.33)

Then,

JKodaira = A−
1

⊕4, (3.34)

corresponding to 4 singular fibers each containing an elliptic curves of A1 singularities. In

the coalesced collection (3.33), δ3/2 becomes a weakly integral null junction, so that

Jweak
null = δ1Z ⊕ δ2Z ⊕ (δ3/2)Z ⊕ δ4Z. (3.35)

and the Mordell-Weil torsion is

MWtor = Jweak
null /Jloop = δ3Z2m ⊕ δ4Zm. (3.36)

As in section 3.4, the torsion sections can be described explicitly in terms of the coordinates

yi on the abelian fiber. They are generated by the sections

(y1, y2, y3, y4) =
(
0, 0, 1

2m , 0
)

and
(
0, 0, 0, 1

m

)
in Xm,n, (3.37)

which are easily seen to be monodromy invariant, up to the identifications yi ∼= yi + 1.

3.5.2 Z2
⊕2 ⊕ Z2m

⊕2 torsion, m = 1, 2

In the case that M = 16 − 4mn ≥ 8, the isometry group of torsion sections can be further

enhanced to Z2
⊕2 ⊕ Z2m

⊕2 by coalescing additional fibers. Consider a coalesced collection
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analogous to that of section 2.5.3. From the braiding operations discussed in appendix A,

we have

AM B1C1 B2C2 B3C3 B4C4
∼= AM−8 B1C1A

2 B2C2A
2 B3C3A

2 B4C4A
2

∼= AM−8 B1A
2B1 B2A

2B2 B3A
2B3 B4A

2B4

∼= AM−8 B1
2D1

2 B2
2D2

2 B3
2D3

2 B4
2D4

2.

(3.38)

In the basis corresponding to the last collection of eq. (3.38), the generators (3.23) of Jnull

become

δ1 =
(
0M−8; (−1)4; 14; (−1)4; 14

)
,

δ2 =
(
(−1)M−8; (M−9)2, (M−10)2; (11−M)2, (12−M)2; (M/2−5)2, (M/2−6)2; (−1)2, 02

)
,

δ3 =
(
0M−8; 04; 04; m4; (−m)4

)
,

δ4 =
(
0M−8; (−m)4; (2m)4; (−2m)4; m4

)
.

(3.39)

The loop junction lattice Jloop is given by eq. (3.27).

Now, suppose that we coalesce fibers pairwise to obtain the collection

(A2) (A2) (B1
2) (D1

2) (B2
2) (D2

2) (B3
2) (D3

2) (B4
2) (D4

2). (3.40)

Then,

JKodaira = A−
1

⊕10, (3.41)

corresponding to 10 singular fibers, equal to the compactified Jacobian of a genus-2 curve

with an I2 type degeneration, or equivalently, each with an elliptic curve of A1 singularities.

Each δi/2 becomes a weakly integral null junction, so that

Jweak
null = (δ1/2)Z ⊕ (δ2/2)Z ⊕ (δ3/2)Z ⊕ (δ4/2)Z. (3.42)

and the Mordell-Weil torsion is

MWtor = Jweak
null /Jloop = (δ1/2)Z2 ⊕ (δ1/2)Z2 ⊕ (δ1/2)Z2m ⊕ (δ1/2)Z2m. (3.43)

The torsion sections can again be described explicitly in terms of the coordinates yi on the

abelian fiber. They are generated by the sections

(
y1, y2, y3, y4

)
=
(

1
2 , 0, 0, 0

)
,
(
0, 1

2 , 0, 0
)
,
(
0, 0, 1

2m , 0
)
, and

(
0, 0, 0, 1

2m

)
in X1,1, (3.44)

which are easily seen to be monodromy invariant, up to the identifications yi ∼= yi + 1.

Finally, torsion subgroups can be obtained by partially uncoalescing the collection.

For example, if we uncoalesce

the (A2)s ⇒ we obtain MWtor = Z2 ⊕ Z2m
⊕2, generated by δ1/2, δ3/2, δ4/2,

and (B2
2), (D2

2) ⇒ we obtain MWtor = Z2m
⊕2, generated by δ3/2, δ4/2,

and (B2
3), (D2

3) ⇒ we obtain MWtor = Zm ⊕ Z2m, generated by δ3, δ4/2.

(3.45)
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3.5.3 Z4 ⊕ Z2
⊕2 torsion and Z2

⊕3 torsion

Now focus on the principally polarized case (m,n) = (1, 1). From the braiding operations

discussed in appendix A, we have

A12 B1C1 B2C2 B3C3 B4C4
∼= A3B1C1 A3B2C2 A3B3C3 A3B4C4

∼= D1
4E1 D2

4E2 D3
4E3 D4

4E4,
(3.46)

where the Ei are defined in appendix A and have vanishing cycles of the form (1, 2, ∗, ∗).
In the basis corresponding to the last collection of eq. (3.46), the generators (3.23) of Jnull

become

δ1 =
(
14,−2; (−1)4, 2; 14,−2; (−1)4, 2

)
,

δ2 =
(
04,−1; (−1)4, 3; 04,−1; 14,−1

)
,

δ3 =
(
010; (−1)4, 2; 14,−2

)
,

δ4 =
(
14,−2; 24, 4; 24,−4; (−1)4, 2

)
.

(3.47)

The loop junction lattice Jloop is eq. (3.27) with m = 1.

Now, suppose that we coalesce quadruples of fibers to obtain the collection

(D1
4)E1 (D2

4)E2 (D3
4)E3 (D4

4)E4. (3.48)

Then,

JKodaira = A−
3

⊕4, (3.49)

corresponding to 4 singular fibers equal to the compactified Jacobian of a genus-2 curve

with an I4 type degeneration, or equivalentally, 4 elliptic curves of A3 singularities. For

weakly integral null junctions, the charges of the Di must be 1/4-integral and those of the

Ei must be integral. This gives weakly integral null junctions δ1/4−δ2/2, δ3/2, and δ4/2,

with

MWtor = Jweak
null /Jloop = (δ1/4 − δ2/2)Z4 ⊕ (δ3/2)Z2 ⊕ (δ4/2)Z2. (3.50)

In terms of the coordinates yi on the abelian fiber, the explicit torsion sections are

(y1, y2, y3, y4) = (1/4, 1/2, 0, 0), (0, 0, 1/2, 0), and (0, 0, 0, 1/2), (3.51)

respectively.

If instead of coalescing quadruples, we coalesce pairs of Di fibers,

(D1
2)(D1

2)E1 (D2
2)(D2

2)E2 (D3
2)(D3

2)E3 (D4
2)(D4

2)E4, (3.52)

then

JKodaira = A−
1

⊕8, (3.53)

corresponding to 8 singular fibers equal to the compactified Jacobian of a genus-2 curve

with an I2 type degeneration, or equivalentally, 4 elliptic curves of A1 singularities. The

Mordell-Weil torsion is reduced from Z4 ⊕ Z2
⊕2 to Z2

⊕3:

MWtor = Jweak
null /Jloop = (δ1/2)Z2 ⊕ (δ3/2)Z2 ⊕ (δ4/2)Z2. (3.54)

In section 4, we will reproduce this last result from the relative Jacobian construction of

X1,1.
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3.6 Connections to other Calabi-Yau manifolds with nontrivial π1

Let us focus on the example in section 3.5.1 in the principally polarized case (m,n) = (1, 1).

The collection is

A8 B1C1 B2C2 (B3
2) (D3

2) (B4
2) (D4

2). (3.55)

with

JKodaira = A−
1

⊕4 and MWtor = Jweak
null /Jloop = Z2. (3.56)

In this case, the Calabi-Yau manifold X1,1 has a Z2 isometry. In terms of the coordinates

y1, y2, y3, y4 on the abelian surface fiber, the isometry is y3 7→ y3 + 1/2.

We now quotient by this isometry and ask what resulting topology is obtained. Since

we would like preserve the condition that the fiber coordinates are periodic modulo 1, we

will rescale the y3 coordinate so that y3
new = 2y3

old. This is implemented by conjugating all

monodromy matrices:

Kold 7→ Knew = TKoldT
−1, where T = diag(1, 1, 2, 1). (3.57)

The conjugation leaves KA, KB2 and KC2 unchanged, and maps the monodromy

matrices KC1 , KB1 , K(D3)2 , K(B3)2 , K(D4)2 , and K(B4)2 to

KeC1
=




2 −1 0 1

1 0 0 1

−2 2 1 −2

0 0 0 1


 ,

K eD3
=




1 0 0 0

2 1 −1 0

0 0 1 0

−2 0 1 1


 ,

K eD4
=




1 0 0 0

2 1 −1 2

−4 0 3 −4

−2 0 1 −1


 ,

KeB1
=




0 −1 0 −1

1 2 0 1

−2 −2 1 −2

0 0 0 1


 ,

KeB3
=




−1 −2 1 0

2 3 −1 0

0 0 1 0

−2 −2 1 1


 ,

KeB4
=




−1 −2 1 −2

2 3 −1 2

−4 −4 3 −4

−2 −2 1 −1


 ,

(3.58)

respectively. The resulting monodromy matrices are all SL(4, Z) similar to KA and there-

fore correspond to irreducible singular fibers of a new collection,

A8 B̃1C̃1 B2C2 B̃3D̃3 B̃4D̃4. (3.59)

The similarity transformation is easy to see in the case of KeB1
and KeC1

, since these are

identical to the matrices KB1 and KC1 of the (m,n) = (1, 2) case. For the remaining KeX,

– 31 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
9

an explicit choice of matrices realizing the similarity transformation KeX = SeXKASeX
−1 is

S eD3
=




0 0 1 0

1 0 0 1

0 1 2 0

−1 0 0 0


 ,

S eD4
=




0 0 −1 0

1 0 0 0

−2 1 −2 −2

−1 0 0 −1


 ,

SeB3
=




1 0 0 1

−1 0 −1 −1

0 −1 −2 0

1 0 0 0


 ,

SeB4
=




1 0 0 0

−1 0 1 0

2 −1 2 2

1 0 0 1


 ,

(3.60)

The vanishing cycles are given by (1,−1, 2, 0) and (1, 1,−2, 0) for B̃1 and C̃1, respectively,

and by the first column of the corresponding matrix in eq. (3.60) for B̃3, D̃3, B̃3, and D̃3.

From the rescaling of y3, the Hodge form on the quotient (obtained from 2ωold) is

ωnew = 2dy1 ∧ dy2 + dy3 ∧ dy4, (3.61)

of polarization (2, 1). Since the Z2 is freely acting, the quotient is again a Calabi-Yau

manifold, with trivial MWtor and π1 = Z2. From these properties, we see that it is a new

Calabi-Yau manifold, distinct from the set of Xm,n dual to T 6/Z2.

In this example, the Z2 action on a reducible (pairwise coalesced) fiber exchanges the

two components, leaving an irreducible fiber. This is case 2 below. More generally, there

are three possibilities for the action of an element of MWtor on a reducible fiber:

1. On each singular elliptic curve of the reducible fiber, the isometry acts freely by

translation. In this case, there is no change in the type of the reducible fiber. The

monodromy matrix factorizes into the same number of irreducible matrices (each

similar to KA) before and after quotienting.

2. The isometry permutes the components of the reducible fiber. In this case, if there is a

single orbit, then the fiber becomes irreducible after quotienting and the monodromy

also becomes irreducible (similar to KA). If there is more than one orbit, then there

is one irreducible component for each orbit.

3. The isometry is along the vanishing cycle (i.e., each point of the singular locus of

the reducible fiber is a fixed point of the isometry). In this case, the singular fiber

becomes “more singular,” i.e., reducible into more components after quotienting, and

the monodromy matrix factorizes into more irreducible factors after quotienting than

before.

4 Algebraic construction in the principally polarized case

In this section, we change gears and provide a second construction of the type IIA Calabi-

Yau geometry dual to T 6/Z2, this time taking an explicit algebro-geometric approach and

focusing on the principally polarized case m,n = 1, 1. Following Saito [41–43], we construct
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P1
u,v C ′

q

q P1
s,t

Cp

p

B

S :

Figure 13. The surface S is a double cover of P1
s,t × P1

u,v branched over a degree (6, 2) curve B.

The fiber Cp over a point p ∈ P1
u,v is a double cover of P1

u,v with 6 branch points (genus-2), and the

fiber C′
q over a point q ∈ P1

s,t is a double cover of P1
u,v with 2 branch points (genus-0).

a principally polarized abelian surface fibration over P1 as the relative Jacobian of a genus-

2 fibered surface S. We show that it satisfies all of the required properties to be the

Calabi Yau manifold X1,1 described in the previous section. By Wall’s theorem [35] and

its extension due to Z̆ubr, a Calabi-Yau manifold is determined up to homotopy type by

its Hodge numbers, second Chern class, and intersection numbers [35, 54]. We show that

all of these quantities agree with those of X1,1, and in addition, compute the Mordell-Weil

lattice from this perspective.

The construction begins with a pencil of genus-2 curves — that is, with surface S,

fibered over P1 via a projection map ρ : S → P1, whose generic fibers Cp = ρ−1(p) are

smooth curves of genus 2.

Associated to each fiber Cp is its Jacobian JCp
∼= T 4, which is a principally polarized

abelian surface. (See appendix F for a review of complex curves and their Jacobians.)

The relative Jacobian JS/P1 is an abelian surface fibration over P1, obtained from S by

replacing each fiber Cp with JCp . For the appropriate choice of S, we show that JS/P1 is

the desired Calabi-Yau 3-fold.

4.1 The surface S

Our choice of S is as follows. Let L2 be a line bundle of degree (6, 2) over P1
s,t × P1

u,v, and

let f(s, t;u, v) be a homogeneous polynomial of degree (6, 2), so that f defines a section of

L2. Then, f1/2 defines a 2-fold section of the line bundle L of degree (3, 1), branched over

the curve B = {f = 0} in P1 × P1. I.e., it is a double cover of P1 × P1 branched over B.

This double cover is the desired surface S.

The surface S can be viewed as a fibration in at least two ways, corresponding to the

natural projections ρ : S → P1
u,v and ρ′ : S → P1

s,t. In the first case, the fiber Cp over a

generic point p = [u, v] is a double cover of P1
s,t branched over the 6 points [s, t] where
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f(s, t;u, v) = 0. In this case, g(Cp) = 2.28 This is the desired genus-2 fibration. In the

second case, the fiber C ′
q over a generic point q = [s, t] is a double cover of P1

u,v branched

over 2 points, which is a P1.

Singular fibers of S. To determine the number of singular fibers of the genus-2 fibration

C → S
ρ−→ P1

u,v, we note that

χ(S) = χ(C)χ(P1) + nsing

(
χ(Csing) − χ(C)

)

= (−2)(2) + nsing(1) = nsing − 4,
(4.1)

assuming that all nsing singular fibers are irreducible.29 On the other hand, since S is the

double cover of P1 × P1 ramified over B,30

χ(S) = 2χ(P1 × P1) − χ(B) = 2χ(P1)2 − χ(B)

= 2(2)2 − (−8) = 16.
(4.2)

Equating the two expressions, we find that nsing = 20. In the same manner, it can be

shown that there are 12 singular fibers of the fibration C ′ → S
ρ′−→ P1

s,t.

Sections P1 →֒ S. A section ℓ of the genus-2 fibration is a rational curve ℓ ⊂ S that

projects 1-to-1 to P1
u,v and therefore intersects each fiber in exactly one point. There are 24

such curves. To identify them, first consider the projection ρ′ : S → Ps,t. The generic fiber

C ′ is a smooth P1 that can be thought of as a double cover of P1
u,v ramified at its two points

of intersection with B. So, it projects 2-to-1 rather than 1-to-1 P1
u,v and intersects each

genus-2 curve C (i.e., locus of fixed [u, v]) twice. However, on 12 singular fibers, the two

ramification points coincide, and the fiber is a nodal P1: it consists of two P1s intersecting

in a point, one on each branch of the double cover. Each of the two P1s projects 1-to-1 to

P1
u,v and intersects each genus-2 curve once. This gives 2× 12 = 24 sections of the genus-2

fibration, denoted by ℓI , ℓ
′
I , for I = 1, . . . , 12. In fact, these are the only sections. Indeed,

the image in P1
s,t × P1

u,v of any section is a section of P1
s,t × P1

u,v over P1
u,v, so it must be a

copy of P1
s,t. But away from the 12 reducible fibers, the inverse image in S of a copy of P1

s,t

is an irreducible two-section, so it does not contain any sections.

Cohomology of S. The cohomology of S is easily calculated from the Leray spectral

sequence for the projection π : S → P1
s,t. (See appendix H for background on direct images

and their relation to Leray spectral sequences.) As we have just seen, the generic fiber is a

P1, while precisely 12 fibers are reducible, P1 ∪ P1. We see that the derived image sheaves

are:

R0 = Z, R1 = 0, (4.3)

28Recall that an elliptic curve (T 2, with g = 1) is a double cover of P1 branched over four points. Likewise,

a genus g ≥ 1 curve is a double cover of P1 branched over 2g + 2 points.
29That is, we assume that Csing is a genus-2 curve in which a single 1-cycle has contracted, or equivalently,

an elliptic curve with 2 points identified. This gives a rational double point singularity of Csing.
30Note that B is of genus 5. This is a special case of the result that g = (α− 1)(β − 1) for a degree (α, β)

curve in P1 × P1 (cf. appendix G).
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and R2 is the direct sum of Z and 12 skyscraper sheaves supported at the 12 singular fibers.

It follows that the Leray spectral sequence degenerates at E2, and:

h0(S) = 1, h1(S) = 0, h2(S) = h1,1(S) = 2 + 12 = 14. (4.4)

Note that

ℓI + ℓ′I = C ′ in H2(S, Z), (4.5)

where C ′ is the class of the generic P1 fiber over P1
s,t. Therefore, the sections ℓI , ℓ

′
I of the

genus-2 fibration span a 13 dimensional sublattice of H2(S, Z). Adding the generic genus-2

fiber C gives the full lattice H2(S, Z).

4.2 The 3-fold X
Starting from the genus-2 fibration C → S

ρ−→ P1, we define a 3-fold X as the relative

Jacobian,

X = JS/P1 = Pic0(S/P1). (4.6)

As already mentioned, this means that X is obtained from S by replacing the genus-2

fiber Cp = ρ−1(p) over each generic point p with its Jacobian abelian surface Ap = JCp .

Singular fibers are replaced by the compactifications of their Jacobians. Let π denote the

corresponding projection map. Then, X is an abelian surface fibration A → X π−→ P1.

Number and type of singular fibers of X . Like S, the 3-fold X has 20 singular fibers,

in agreement with the number of singular fibers of X1,1 in section 2. Each is topologically of

I1×T 2 type. However, the complex structure does not in general respect this factorization.

Instead, the singular fiber should be viewed as the P1 bundle P1
(
O(p) ⊕ O(q)

)
over an

elliptic curve E, with the zero section [0, ∗] glued to the section at infinity [∗, 0]. Here p

and q are two points on E.31 This leaves a unique section E0
∼= E∞. This elliptic curve is

the singular locus of the singular fiber.

To derive this form for the singular fibers of the X , let us first consider the singular

fibers of S and then find their compactified Jacobians. Recall that the generic I1 degen-

eration of an elliptic fibration can be viewed as a P1 with two points identified; these are

the 2g + 2 = 2 branch points in the presentation of P1 as branched double cover of P1.

Likewise, a genus-2 curve C is a branched double cover of P1 with 6 branch points, so the

generic singularity is one in which 2 of these points coincide. It can be viewed as an elliptic

curve E with two points p and q identified

C ∼= E/{p ∼ q} (generic degeneration of the genus-2 curve C). (4.7)

The normalization map ν : E → C identifies the points p and q.

A line bundle on C pulls back via the normalization map ν to a line bundle on E. In

fact, specifying a line bundle on C is the same as specifying a line bundle L on E together

31When p = q, the fiber factorizes as E times I1, where the I1 is realized as P1 with the points 0 and ∞
identified. But when p 6= q we instead identify ∞ ∈ P1

r in the fiber at each point r ∈ E with ∞ ∈ P1
r+(q−p)

in a different fiber at the shifted point r + (q − p) ∈ E.
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with a gluing of the fibers of L at p, q. The set of these gluings is a copy of the group of

isomorphisms from the line C to itself, which is given by the multiplicative group C∗. It

follows that Pic(C) is an extension of Pic(E) by C∗. In order to compactify, we must allow

torsion free sheaves on C that are not necessarily line bundles. The effect is to replace each

fiber C∗ by its compactification P1. Note what happens when the gluing parameter t ∈ C∗

goes to 0: the map from Lp to Lq, which is an isomorphism for most t, becomes the 0 map

as t → 0. The result is the torsion free sheaf ν∗
(
L ⊗ OE(−p)

)
. Its fiber at the singular

point has rank 2 rather than 1, and consists of the direct sum of the fiber of L ⊗OE(−p)

at p with the fiber of L at q. On the other hand, when the gluing parameter t ∈ C∗ goes

to ∞, the inverse map from Lq to Lp, which is an isomorphism for most t, becomes the 0

map as t → ∞. The result is now the torsion free sheaf ν∗
(
L ⊗OE(−q)

)
. Its fiber at the

singular point consists of the direct sum of the fiber of L at p with the fiber of L⊗OE(−q)

at q. In other words, the 0 and ∞ sections of the P1 fibration over Pic(E) are glued to

each other, but the gluing is not the obvious one: it involves a shift of OE(p − q). This is

summarized in the following diagram:

0 −−−−→ C∗ −−−−→ JC
ν∗

−−−−→ JE −−−−→ 0

T
y

y
∥∥∥

P1 −−−−→ J ′ −−−−→ JEy

J̄C

. (4.8)

Hodge numbers. The number of complex structure deformations of S is the choice of

degree (6, 2) polynomial f(s, t;u, v) modulo equivalences:

h1,1(S) = (6 + 1)(2 + 1) − (1 overall rescaling) − (3 + 3 from SL(2, C)2) = 14. (4.9)

The complex structure deformations of X are in 1-to-1 correspondence with those of S.

Therefore, h2,1(X ) = 14. But we have just seen that every fiber of X over P1 is either an

abelian surface, which is topologically T 4, or it is singular, in which case it is topologically

T 2 times a nodal curve. Either way, the Euler characteristics of all fibers vanish. It follows

that the Euler characteristic of X vanishes as well, so h1,1 = h2,1 = 14. The Hodge numbers

of X agree with those X1,1.

The Calabi-Yau condition. We wish to show that the manifold X has trivial canonical

bundle. Consider any P1 section of the abelian fibration X . By the adjunction formula,

KX|P1 = KP1 ⊗ det(N∗
P1) = OP1(−2) ⊗ det(N∗

P1), (4.10)

where N∗
P1 is the conormal bundle to P1 in X . Therefore, X is a Calabi-Yau manifold if

det(N∗
P1) = OP1(2). To compute N∗

P1, we note that

N∗
P1 = ρ∗KS/P1 , (4.11)
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where ρ∗ is the direct image functor32 of the projection map ρ : S → P1
u,v. In appendix I, it

is shown that this gives NP1 = OP1(−1) ⊕OP1(−1), from which the desired result follows.

4.3 Checks

4.3.1 Intersection numbers

In appendix J, it is shown that to each of the 24 sections ℓI , ℓ
′
I , for I = 1, . . . , 12, we can

associate a theta surface ΘI or Θ′
I ∈ X . The theta surfaces are embeddings of S in the

Calabi-Yau threefold X . They satisfy homology relations analogous to those of eq. (4.5),

ΘI + Θ′
I = D in H4(X , Z), (4.12)

where D is independent of I.

The theta surfaces together with generic abelian fiber A form a basis of H4(X , Z).

Their double and triple intersections are computed in appendix J. The result for the triple

intersections of theta surfaces is

ΘI · ΘJ · ΘK = −1,

ΘI · ΘJ · ΘJ = ΘI · Θ′
J · Θ′

J = −2,

ΘI · ΘI · Θ′
I = ΘI · ΘJ · Θ′

J = 0,

ΘI · ΘI · ΘI = −4,

(4.13)

for I, J,K distinct, together with equations obtained from these by exchange of Θ and Θ′.

For triple intersections in which A appears, we have A2 = 0, and

A · ΘI · ΘJ = A · ΘI · Θ′
J = A · Θ′

I · Θ′
J = 2, (4.14)

for all I, J , not necessarily distinct.

With the identifications,

EI = (ΘI − Θ′
I)/2, H = (ΘI + Θ′

I)/2 + A/6, (4.15)

these intersections precisely match the result (3.8) obtained by classical supergravity duality

in ref. [46]. It is important to confirm that the integrality matches as well. The factors of

1/2 are exactly as expected. The fact that EI is half of an integer divisor is equivalent to

the statement in the T 6/Z2 dual that a string stretched between a single D3-brane and its

image represents half of a root of SO(2M) (cf. section 2.4). The factor of 1/2 in H can

be understood in a similar way. The appearance of the A/6 term in H is more subtle and

requires a careful definition of warped volume in the T 6/Z2 dual to justify its appearance.

A proper treatment of this subtlety is an essential ingredient of the analysis of duality map

between D3 instantons and worldsheet instantons under investigation in ref. [25], to which

the reader is referred for further details.33

32See appendix H for background on the direct image ρ∗ and higher direct images (derived functors)

Riρ∗.
33Note that ref. [46] missed the subtlety responsible for the A/6 term in H . There, H was naively

identified with a single theta surface, based on the fact that A ·H gives the homology class of C. However,

this intersection is preserved when H is shifted by a multiple of A or replaced by a weighted sum of theta

surfaces of total weight 1. Indeed, H in eq. (4.15) differs from a single theta surface in exactly these two

ways.
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4.3.2 Second Chern class c2(X )

The second Chern class c2(X ) is the sum of the 20 elliptic curves Ei that are singular loci

of the singular compactified Jacobians. Its intersection with a theta surface, for any of the

24 possible choices ΘI or Θ′
I , is 20, and its intersection with the generic abelian fiber A is

zero. Thus, H · c2 = 20 for H, as given by eq. (3.9).

To derive c2, we note that the normal bundle sequence has a very simple modification:

the vertical subsheaf of the tangent bundle is still a line subbundle, which is still π∗ of

the normal bundle to P1 in X (for any P1 section of the fibration); the horizontal piece is

still π∗TP1 , but the map now is not surjective — instead there is a cokernel which is the

structure sheaf of the 20 elliptic curves.

0 → NP1 → TX → π∗TP1 → π∗TP1

∣∣S20
i=1 Ei

→ 0. (4.16)

Here, ∆ = {p1, . . . , p20} is the discriminant locus of the genus-2 fibration ρ : S → P1, and

the elliptic curves Ei ∈ π−1(pi) are the singular loci of the degenerate fibers of π : X → P1.

Note that in the discussion of the first Chern class (Calabi-Yau condition) above in

section 4.2, there was no special contribution from singular fibers. This is intuitively clear.

The P1 sections intersect singular fibers at smooth points, so the singular fibers should not

affect c1.

4.3.3 Mordell-Weil lattice: D−
12

As discussed in section 2 and appendix B, the Mordell-Weil group MW(X ) is the group of

rational sections of the Abelian surface fibration X , and the Mordell-Weil lattice MW(X )/

MWtor(X ) is the lattice of sections modulo torsion. To determine this lattice, we would

like to relate the sections of X to those of the genus-2 fibration S. The sections of X and

S do not quite encode the same data. In particular, the sections of the abelian fibration

X form a rank 12 lattice, while those of S form a finite set (just the 12 pairs ℓI , ℓ
′
I of

section 4.1). However, given a choice of section ℓ0 to play the role of zero section, we can

map each of the 24 sections of S to a section of X , as we now show. This allows us to

describe the Mordell-Weil lattice of X as a sublattice of H2(S, Z).

The 24 sections ℓI , ℓ
′
I ⊂ S can be thought of as elements of Γ(P1,Pic1(S/P1)).34 Since

X = Pic0(S/P1), we similarly have

MW(X ) = Γ(P1,Pic0(S/P1)). (4.17)

To relate the two, we note that Pic1(S/P1) ∼= Pic0(S/P1) via a noncanonical isomorphism,

Pic1(S/P1)
⊗[ℓ0]−1

−−−−−→ Pic0(S/P1), ℓ 7→ ℓ − ℓ0, (4.18)

where ℓ0 ∈ {ℓI , ℓ
′
I}. The isomorphism depends on the choice of which of the 24 sections

ℓI , ℓ
′
I maps to the zero section of X .

34See appendix F for the definition of Picn(S/P1) and further elaboration of this statement.
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This isomorphism endows Pic1(S/P1) with the structure of an abelian group and allows

us to relate the Mordell-Weil lattice of X to the Néron-Severi lattice35 of S via

MW(X ) ∼= K⊥ ⊂ NS(S), (4.19)

where K is spanned by ℓ0, the generic genus-2 fiber C, and the components of reducible

fibers (in the case that there exist special fibers with multiple components). Here, the

intersection pairing on S is used to define both the orthogonal complement K⊥ and its

height pairing.

Let us assume for simplicity that there are no reducible fibers. Then the Mordell-Weil

lattice is just the orthogonal complement of ℓ0 and C in NS(S). From the intersections

ℓ · ℓ = −1, ℓ · C = 1, C · C = 0, (4.20)

for any section ℓ of S, the map from NS(S) to MW(X ) is

v 7→ v⊥ = v − (v · C) ℓ0 −
(
v · (ℓ0 + C)

)
C. (4.21)

The resulting lattice is the root lattice of D12. To see this, choose ℓ0 = ℓ′12 for con-

creteness. Then, from

ℓI · ℓ′J = δIJ , ℓI · ℓJ = ℓ′I · ℓ′J = −δij , (4.22)

we have

ℓI 7→ ℓ⊥i = ℓI − ℓ12′ − C,

ℓ′I 7→ ℓ′⊥i = ℓ′I − ℓ12′ − C,
(4.23)

for i = 1, . . . , 11, and

ℓ12 7→ ℓ⊥12 = ℓ12 − ℓ′12 − 2C, (4.24)

with ℓ′12 7→ ℓ′⊥12 = 0 and C 7→ C⊥ = 0.

The D12 roots are vI = ℓ⊥I − ℓ⊥I+1, for I = 1, . . . , 11 and v12 = ℓ⊥11. In terms of the

sections ℓI and ℓ′I ,

vI = ℓI − ℓI+1 = ℓ′I+1 − ℓ′I , I = 1, . . . , 10,

v11 = ℓ11 − ℓ12 + C,

v12 = ℓ11 − ℓ′12 − C.

(4.25)

The roots vI generate a 12 dimensional sublattice of NS(S). Their intersection matrix is

minus the Cartan matrix of D12.

35The Néron-Severi lattice is roughly the same as the algebraic (i.e., 1, 1) part of H2(S, Z). There are

several closely related definitions of equivalence classes of divisors, for example, homological equivalence,

linear equivalence (same line bundle) and numerical equivalence (same intersections). The Néron-Severi

lattice is the lattice of algebraic equivalence classes of divisors, however, we will not need the technical

definition of algebraic equivalence here, since on a projective variety, homological equivalence of divisors is

equivalent to algebraic equivalence. (See ref. [28], p. 462.) In this case, Néron-Severi lattice is NS(S) ∼=
H1,1(S) ∩ H2(S, Z) ∼= Pic(S)/Pic0(S).
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P1
u,v B1,0 B′

1,0

P1
s,t

B4,2

A1

A1

A1

A1

S :

Figure 14. The surface S is a double cover of P1
s,t×P1

u,v branched over B. When the branch curve

B factorizes into a degree (4,2) curve B4,2 (of genus 3) and two (1,0) curves B1,0 and B′
1,0 (of genus

0), the difference B1,0 − B′
1,0 is a Z2 torsion section of S.

4.4 Mordell-Weil torsion and connection to other CY manifolds

In the junction description, we have seen a number of examples in section 3.5 with enhanced

Mordell-Weil torsion from coalesced singular fibers. The simplest example is Z2 torsion,

which arises when 4 pairs of singular fibers of Xm,n coalesce, to give 4 reducible singular

fibers (of topological type I2 × T 2) and 4 elliptic curve of A1 singularities of the threefold.

In the case of X1,1, it should be possible to reproduce the results of section 3.5 in the

present description in terms of the relative Jacobian of S. In this construction, the surface

S is a branched double cover of P1
s,t × P1

u,v, so the singularity structure of S, and hence

of X , is completely determined by the degree (6, 2) branch curve B. Coalesced fibers, in

the language of section 3.5, arise when B becomes singular in some way. For surfaces, the

correspondence between singularities of a double cover and those of the branch curve is

well understood. (See, for example, ref. [5] section III.7.) One way that B can develop

singularities, is if it is reducible, i.e., if its defining polynomial factorizes. Then singularities

arise from intersections of different components of B. This is not the only way in which B

can develop singularities, but it will be sufficient for our purposes.

To reproduce the simplest case of Z2 Mordell-Weil torsion, consider the factorization

(6, 2) = (4, 2) + (1, 0) + (1, 0), so that the branch curve B has irreducible components

B4,2, B1,0 and B′
1,0, with the degree of each curve in P1

s,t × P1
u,v given by its subscript.

Then B has an A1 rational double point at each of the four points of intersection of the

components of B (cf. figure 14), and from ref. [5] section III.7, so does the surface S.

Note that the (1, 0) curves are sections of the genus-2 fibration S → P1
u,v. Moreover,

2B1,0 and 2B′
1,0 are each double covers of P1

u,v, so each is homologous to C ′, the genus-0

fiber of the fibrations S → P1
s,t, modulo irrelevant vertical components. It follows that

the difference 2
(
B′

1,0 − B′
1,0

)
is trivial in the Mordell-Weil group, and B′

1,0 − B′
1,0 is a Z2

torsion class. Quotienting by this isometry gives a new Calabi-Yau manifold with Hodge
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P1
u,v B1

1,0 B4
1,0B3

1,0 B4
1,0

P1
s,t

B2,2

A1

A1

A1

A1

A1

A1

A1

A1

S :

Figure 15. The surface S is a double cover of P1
s,t×P1

u,v branched over B. When the branch curve

B factorizes into a degree (2,2) elliptic curve B2,2 and four (1,0) rational curves Bi
1,0, the differences

Bi
1,0−Bj

1,0 generate a (Z2)
⊕3 of torsion sections of S. Ramification points of the projection B → P1

s,t

are shown in bold.

numbers h1,1 = h1,2 = 10, trivial Mordell-Weil torsion, and fundamental group π1 = Z2.

The Z2 action on the (resolved) reducible fibers is fixed point free, and permutes the two

components.

To obtain Z2
⊕3 Mordell-Weil torsion, an analogous construction goes through with the

factorization (6, 2) → (2, 2) + (1, 0) + (1, 0) + (1, 0) + (1, 0). In this case the branch curve

B consists of an elliptic curve B2,2 (cf. the genus formula of appendix G), and rational

curves Bi
1,0, for i = 1, 2, 3, 4, each of which is a section of the genus-2 fibration S → P1

u,v.

Again, 2Bi
1,0 = C ′ in homology, modulo irrelevant vertical components on the resolution,

so MWtor = Z2
⊕3, generated by the three linearly independent differences of the Bi

1,0. This

is the algebro-geometric description of the Mordell-Weil torsion in the second example of

section 3.5.3.

One can ask whether a further enhancement of Z2
⊕3 to Z4 ⊕ Z2

⊕2 is possible, as in

section 3.5.3, by coalescing pairs of A1 singularities of S into A3 singularities. We can

indeed obtain this singularity structure by moving each Bi
1,0 to a ramification points of

the elliptic curve B2,2, relative to the projection B2,2 → P1
s,t.

36 Each intersection point is

then a tacnode of B, which from ref. [5] section III.7 gives an A3 singularity of S.37 While

this picture is tantalizing, and we have succeeded in reproducing the desired singularity

structure, we have not been able to identify a Z4 isometry of the resulting reducible fibers

of S. We leave the task of reproducing the Z4 ⊕Z2
⊕2 Mordell-Weil torsion group from the

relative Jacobian construction as an open problem.

36Only two such points are visible in the cartoon of figure 16, but this is a deficiency of the cartoon. We

know that there are really four ramification points, exactly the number necessary for one Bi
1,0 to be tangent

at each. (Recall that an elliptic curve (genus 1) is the double cover of P1 with 2g + 2 = 4 branch points.)
37To apply ref. [5], we need to use the fact that the proper transform of a tacnode is as given in the first

of the diagrams listed in section III.7.
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P1
u,v B1

1,0 B4
1,0

P1
s,t

B2,2

A3 A3S :

Figure 16. When the rational curve Bi
1,0 of figure 15 is placed at one of the four ramifications points

of B2,2 → P1
s,t, the resulting tacnode of the branch curve yields an A3 singularity of the surface S.

There are four such ramification points, but only two are visible in the schematic diagram above.

Finally, consider the remaining factorizations of the (6, 2) branch curve into a (∗, 2)
component and some number of (1,0) components:

(5, 2) + (1, 0), (3, 2) + (1, 0)⊕3, and (1, 2) + (1, 0)⊕5. (4.26)

The last two factorizations give Z2
⊕2 and Z2

⊕4 Mordell-Weil torsion, respectively, as ob-

tained in section 3.5.2 for m = 1. The first factorization gives two A1 singularities of S and

no Mordell-Weil torsion; this is exactly the result of continuing eq. (3.45) one step further,

so that the only coalesced fibers are (B2
1) and (D2

1).

5 Conclusions and future directions

We have seen two explicit constructions of the type IIA Calabi-Yau duals Xm,n of the type

IIB T 6/Z2 orientifold:

1. A monodromy and junction based description.

2. An algebro-geometric description as the relative Jacobian of a genus-2 fibered sur-

face S (in the principally polarized case, m,n = 1, 1).

In each case, we have computed the Mordell-Weil lattice of sections, to obtain the

required DM lattice. From a mathematical standpoint, we have shown that the junction

description provides an efficient algorithm for computing the lattice of rational sections

of an abelian surface fibration in terms of tree graphs on the base — a generalization of

F-theory string junction technology to T 4 fibrations. For the relative Jacobian construc-

tion, we have checked that all criteria are satisfied for the application of Wall’s theorem —

which classifies the threefold up to homotopy type (Hodge numbers, second Chern class,
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intersection numbers) — and have reproduced the D12 Mordell-Weil lattice from this per-

spective.

Applications to ongoing and future work are as follows:

D-brane instantons. Having achieved the explicit constructions, the rational curves

of the Xm,n are now well understood, which lays the groundwork for the computation

of worldsheet instanton corrections to the N = 2 prepotential. Worldsheet instantons

wrapping P1 sections of the T 4 fibration are dual to Euclidean D3-instantons in the type

IIB T 6/Z2 orientifold (and to D2-instantons in an intermediate type IIA dual). Therefore,

they provide a duality check [25] of the modified rules for D-brane instanton corrections in

warped compactification due to flux [6] and brane intersections [24] — in similar spirit to

ref. [11].

Warped KK reduction. The clasical supergravity description of T 6/Z2 with N =

2 flux is exactly dual to the description of a type IIA Calabi-Yau compactification in

terms of an explicit, first order approximation to the Calai-Yau metric (3.10) with known

harmonic forms [46]. The low lying massive modes for large Calabi-Yau base are also

known. Therefore, the known procedure for ordinary Kaluza-Klein reduction to 4D can be

re-expressed in terms of the dual variables to deduce warped KK reduction for T 6/Z2 [7].

A simpler warm-up problem applies a similar duality to deduce the warped KK reduction

ansatz for the type IIA T 3/Z2 orientifold from the standard compactification of M-theory

on a K3 surface [7].

Extended SUSY breaking by topology. In any type II Calabi-Yau compactification,

extended supersymmetry is broken to 4D N = 2 at the compactification scale by the Calabi-

Yau geometry. In T 6/Z2, the quantized flux spontaneously breaks N = 4 supersymmetry,

at a scale hierarchically lower than the compactification scale for large volume. In the

dual type IIA compactification on Xm,n, this gives a precise sense in which the Calabi-

Yau topology spontaneously breaks N = 4 to N = 2 for large P1 base. The Calabi-Yau

compactification, with SU(3) Levi-Civita holonomy, can be viewed as a SU(2) structure

compactification, the formalism for which was worked out in ref. [52] (and subsequent

work by the Hamburg group, to appear). Applying this SU(2) structure formalism to

the compactification on the approximate first order metric of Xm,n is an essential step of

work described in the previous paragraph, but is interesting in its own right as a concrete

example of spontaneous supersymmetry breaking by topology.

Heterotic model building on new non simply connected manifolds. The Calabi-Yau

duals Xm,n have π1 = Zn×Z2 for n = 1, 2, 3, 4. Moreover, at special points in moduli space,

these Calabi-Yau manifolds develop enhanced isometry groups (cf. sections 3.5 and 4.4),

the quotients by which yield new Calabi-Yau manifolds with other fundamental groups.

Since few Calabi-Yau manifolds with nontrivial π1 are known [31], these constructions are

mathematically interesting.38 In addition, they furnish a new class of compactification

manifolds for Wilson line breaking of GUT groups in heterotic models [20, 43].

Finally, let us point out two additional connections to recent work:

38From a mathematical standpoint these manifolds are also interesting in that Calabi-Yau manifolds with

T 4 fibrations do not arise as hypersurfaces in 4D toric varieties, so only a few examples exist compared a

much larger class of known K3 fibrations.
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D(imensional) duality. ref. [27] considered compactifications that interpolated between

a compactification in the critical dimension on a Riemann surface C of genus g and a

supercritical compactification on its Jacobian torus JC with a timelike linear dilaton. One

might expect similar compactifications to exist, connecting a subcritical compactification

on C to an asymptotic region with compactified on JC with an asymptotically constant

linear dilaton. Such compactifications (fibered over a P1 base) provide a context in which

not only Calabi-Yau X1,1, but also the auxilliary surface S of section 4, is part of the

physical compactification geometry.

T-fold compactifications. T-fold compactifications are nongeometric compactifications

similar to compactifications on T n fibrations, except that the transition functions lie in

the T-duality group O(n, n; Z) rather than its geometric subgroup GL(n; Z) [36]. For

n = 3, the component of the T-duality group continuously connected to the identity is

SO(3, 3; Z)+ ∼= SL(4; Z). So, in this case an n = 3 T-fold encodes the same data as T 4

fibration over the same base [56]. Thus, the collections of SL(4, Z) monodromies defining

the Calabi-Yau manifolds Xm,n in section 3.1 can alternatively be taken to define T-fold

compactifications. In fact, we have already seen this as part of the duality map described

in section 3.1. The connection between the T 4 fibration and n = 3 T-fold compactification

is that M-theory on the former is type IIA compactified on the latter. Thus, starting

from M-theory on Xm,n, For one choice of M-theory circle, we recover a type IIA T-fold

compactification that happens to be purely geometric — the intermediate D6/O6 orientifold

with flux in the duality chain 2 of section 3.1. For other choices of the M-theory circle, the

T-fold is expected to be nongeometric.

Acknowledgements

We are grateful to P. Argyres, K. Becker, V. Bouchard, V. Braun, O. DeWolfe,

D. Freed, K. Hori, M.-H. Saito and G. Segal for conversations. The research of R.D. is

supported by NSF grants DMS 0612992 and Research and Training Grant DMS 0636606.

The work of P.G. and M.S. is supported in part by the DOE under contract DE-FG02-

95ER40893, the National Science Foundation under Grant No. PHY99-07949, the National

Science and Engineering Council (NSERC) of Canada, and by a start-up grant at Bryn

Mawr College. P.G. thanks ETH Zurich, the CERN TH Division, Perimeter Institute, and

the University of British Columbia for hospitality. M.S. thanks the University of Toronto,

the Aspen Center for Physics, and the CERN TH divison for hospitality during the course

of this work, as well as the University of Pennsylvania for continued hospitality.

A Braiding operations and monodromy matrices

A.1 Elliptic fiber

As described at the end of section 2.3, when a (p, q) 7-brane is transported across the

branch cut of another 7-branes, its (p, q) type changes. The reason is simple: Consider a

(p, q) string ending on a (p, q) 7-brane, and transport the 7-brane through a branch cut.

From eq. (2.3), we know that the (p, q) charge of the string transforms when it crosses the

branch cut. Therefore, the charge of 7-brane on which it ends must transform in the same

way. We will use the symbol ∼= to denote equivalences under such braiding operations,
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i.e., under brane motions of type IIB string theory or motions of singular fibers of elliptic

fibrations. The basic relation is

Xz1Xz1
∼= Xz2Xz′1

, (A.1)

via motion of the brane or singular fiber Xz1 counterclockwise through the branch cut of

Xz2 . Here, zi =
(pi

qi

)
, and

z′1 = K[p1,q1]z1. (A.2)

The transformation of the monodromy matrix follows by writing

Kz2Kz1 = Kz′1
Kz2 , (A.3)

from which we deduce that

Kz′1
= Kz2Kz1K

−1
z2

. (A.4)

The monodromy matrix of Xz1 is conjugated by that of the branch cut it crosses.

As examples of braiding, we now explain how to realize the SO(2N) enhancement from

N < 4 D7-branes at an O7-plane, in terms of nonperturbative description of the type IIB

T 2/Z2 orientifold, with 24 (p, q) 7-branes (F-theory on K3, with 24 I1 fibers). It is not

immediately apparent how the enhancement occurs in the nonperturbative description,

since the collection ANBC cannot be coalesced for N < 4. We provide explicit brane

motions that make the D1
∼= A1, D2

∼= A1 ⊕ A1 and D3
∼= A3 lattices manifest on

subcollections of (p, q) 7-branes.

In addition to A, B and C defined in section 2.3, it is also convenient below to define

D = X0,1 and E = X1,2, with monodromy matrices

KD =

(
1 0

1 1

)
and KE =

(
3 −1

4 −1

)
, (A.5)

respectively. Note the following useful braiding relations,

DA ∼= AB ∼= BD,

DC ∼= CA ∼= AD,

CD ∼= DE,

BC ∼= CX3,1,
(A.6)

which can be combined to give

CA2 ∼= A2B and ABC ∼= BCA. (A.7)

Most of these relations are used below.

For N = 1, we have

ABC ∼= BCA ∼= BAD ∼= AD2 ∼= C2A. (A.8)

Coalescing the D2 or C2 in the last two expressions gives A1
∼= D1 (I2 reducible fiber).

For N = 2, we have

A2BC ∼= BCA2 ∼= BA2B ∼= B2D2. (A.9)
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Coalescing the B2 and D2 gives A1 ⊕ A1
∼= D2 (I2 fiber at two different points on P1).

For N = 3, we have

A3BC ∼= ABCA2 ∼= ABA2B ∼= AB2D2

∼= DABD2 ∼= DBD3 ∼= D4E.
(A.10)

Coalescing the D4 gives A3
∼= D3 (I4 reducible fiber).

For N ≥ 4, ANBC can be coalesced to give a DN singularity (I∗N−4 fiber) of the elliptic

surface.

A.2 Abelian surface fiber

For the abelian surface fibrations Xm,n studied in this paper, we similarly define X[p,q],i

fibers by the monodromy matrices

K[p,q],i = TiK[p,q],2T
−1
i for i = 1, 3, 4,

K[p,q],2 = K[p,q] ⊕ I2×2 =

(
Kp,q

I2×2

)
,

(A.11)

where the matrices Ti(m,n) are given in eq. (D.11) below. The vanishing cycles of the

X[p,q],i fibers are of the form (p, q, ∗, ∗). Explicitly, for i = 2 the vanishing cycle is (p, q, 0, 0),

while for i 6= 2 it is (p, q, 0, 0)TT
i . Defining Ai, Bi, Ci, Di and Ei in this way, we find

that KAi
is independent of i, so we drop the subscript. Then, by similarity transformation

(using Ti), the braiding relations for elliptic fibrations in the previous subsection all remain

valid for abelian surface fibrations, provided that fixed i is used throughout each relation.

B Complex tori, abelian varieties, and the Mordell-Weil lattice

First, note the following definitions [23, 28]:

• Complex torus. Starting from the vector space Cg, and a discrete lattice Λ ⊂ Cg

of maximal rank 2g, we define a complex torus by the quotient T 2g = Cg/Λ. For

example, a complex T 2 is the quotient of C by Λ = Z + τZ.

• Group law. Addition of vectors endows Cg with the structure of an abelian group,

such that Λ is a subgroup, and T 2g a quotient group. The group law T 2g×T 2g → T 2g

is just addition of points modulo Λ.

• Abelian variety. A complex torus is called an abelian variety if it admits an embedding

in projective space. For a T 2, this embedding is always possible and the abelian

variety is called an elliptic curve.

• Weierstrass model. An elliptic curve E over the complex numbers is given by the

Weierstrass model,

zy2 = 4x3 − g2xz2 − g3z
3, g2, g3,∈ C,
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where [x, y, z] ∈ P2. In this case, the explicit map from points on the complex torus

t ∈ C2/
(
Z + τZ

)
to points on the elliptic curve is [x, y, z] = [℘(t), ℘′(t), 1], where ℘ is

the Weierstrass ℘-function. The complex modulus τ is determined by the Weierstass

j-function.

• Rational points. When the coeffients of the defining polynomials of an abelian variety

A over C are rational numbers, we can consider the subgroup A(Q) of rational points

on A — those points whose projective coordinates are also rational. (For example if

g2, g3 ∈ Q in the Weierstrass model, the rational points are solutions with x, y ∈ Q.)

• Mordell’s theorem. The group of rational points of an abelian variety is known as the

Mordell-Weil group. Mordell’s theorem states that this group is finitely generated:

A(Q) = Z⊕r ⊕ A(Q)tor, where A(Q)tor = ⊕dimA
i=1 Zmi

,

for positive integers mi.

• Mordell-Weil lattice. An abelian variety A over C together with a symmetric divisor,

determines a canonical height function on the points of A, and a corresponding inner

product. This inner product gives A(Q)/A(Q)tor the structure of a lattice, known

as the Mordell-Weil lattice. (For further details, including the definitions of height

function and symmetric divisor, which will not concern us here, see ref. [34].)

We can also work over a general number field k.39 In this case, an abelian variety is a

defined to be a projective variety — the simultaneous solution to polynomial equations in

k-projective space — together with the additional structure of an abelian group. In the

discussion of complex tori, we obtain one such interpretation for each embedding of k in

C. The remaining definitions can be carried over to the more general case, and Mordell’s

theorem remains valid.

One reason to consider this generalization is that it allows us to consider an abelian

fibration

π : X → B with abelian fiber A

to be an abelian variety in its own right:

• Rational functions. Given a field k, let K[x] denote the ring of polynomial functions

of x with coefficients in k. The field of rational functions K(x) consists of functions

that are ratios of polynomials in K[x].

• Abelian fibration over B. Consider an abelian variety over the function field K =

k(B): the field of rational functions on the base B. The defining polynomials are

functions on B. By evaluating these functions, we obtain an abelian variety over k

at each point of B, i.e., an abelian fibration. A single rational point over K gives a

rational point of the fiber over every point of the base, i.e., a section. The Mordell-

Weil group is thus the group of rational sections of the fibration modulo constant

sections.
39A number field is a finite extension of Q.
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For example, in the Weierstrass model, if we take g2(w), g3(w) ∈ C(w) to be rational

functions on P1, then the rational points are those solutions [x(w), y(w), 1] such that x and

y are also rational functions on P1. For each point w ∈ P1, the Weierstrass model gives

a single elliptic curve over C. Each rational point [x(w), y(w), 1] gives a section: a map

from P1 to the elliptic fibration. For this reason, we generally use the terminology rational

section rather than rational point.

Given a complex torus Cg/Λ ∼= T 2g, it is natural to ask under what conditions the

torus is an abelian variety, i.e., can be embedded in complex projective space. This leads

to the following definitions:

• Hodge form. A complex torus is an abelian variety if there exists a Hodge form ω:

a closed positive form of type (1,1) representing an integer cohomology class. (See

ref. [28], p. 302.).

• Polarization. When such a form exists, the cohomology class [ω] is called a polariza-

tion, and can be represented by an invariant form

ω =

g∑

i=1

δidxi ∧ dyi with δi

∣∣ δi+1, (B.1)

in terms of coordinates xi ∼= xi + 1 and yi ∼= yi + 1 dual to a suitably chosen integer

basis of the lattice Λ. The positive integers δi are called the elementary divisors of

the polarization. The class [ω] is a principal polarization if δi = 1 for all i [28].

C Mordell-Weil height pairing from intersections

As mentioned in the previous section, the Mordell-Weil group modulo torsion MW/MWtor

of an abelian fibration X can be given the structure of a lattice. The lattice inner product

is determined by the homological intersection pairing on a surface in X . However, this

first requires a map from MW(X ) to H2(X ). Here, we describe the map and resulting

inner product, including a slight subtlety regarding the integrality of the map when X has

reducible fibers (related to the weakly integral junctions of section 2.6).

C.1 Elliptic fibration over a curve

The theory of the Mordell-Weil lattice of an elliptic surface π : X → B was given by Shioda

in refs. [50, 51]. We follow ref. [51] closely. Let P and Q denote rational sections of the

elliptic fibration, O the zero section, and [P ], [Q], [O] the corresponding divisor classes in

NS(X ). Let F denote the class of the generic fiber. We assume that there is at least one

singular fiber.

Irreducible fibers. In the case that the singular fibers are all irreducible, the inner

product 〈P,Q〉 on the Mordell-Weil lattice of X is simply the intersection pairing

〈P,Q〉 = [P ]⊥ · [Q]⊥, (C.1)
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where [P ]⊥ = [P ]−a[O]−bF ∈ H2(S, Z), with a and b chosen so that [P ]⊥ ·[O] = [P ]⊥ ·F =

0. We can compute a and b explicitly using

σ2 = −χ, σ · F = 1, and F 2 = 0. (C.2)

Here, σ is the class of any section and χ is the arithmetic genus40 of X . The result is a = 1

and b = [P ] · [O] + χ. This defines an embedding of the Mordell-Weil lattice,

ϕ : MW/MWtor →֒ H2(X , Z), such that P 7→ [P ]⊥. (C.3)

Reducible fibers. When the elliptic fibration has reducible fibers, a similar story holds.

However, in this case, the best we can do is to embed the Mordell-Weil lattice in H2(X , Q).

Let Fp = π−1(p) denote the fiber over a point p ∈ B, and

R = {p ∈ B | Fp is reducible}. (C.4)

Then, for each p ∈ B, we can decompose Fp into irreducible components Fp,i. For simplicity,

we assume that each component appears with multiplicity 1, so that

Fp =

mp−1∑

i=0

Fp,i. (C.5)

We label the components so that Fp,0 is the unique component that intersects the zero

section. Let T denote the subgroup of NS(X ) generated by components of fibers and [O].

Under the assumption that the elliptic surface X has at least one singular fiber, both NS(X )

and T are torsion-free. The Mordell-Weil group is the quotient

MW(X ) = NS(X )/T. (C.6)

To define the Mordell-Weil lattice, we seek an embedding ϕ : MW/MWtor →֒ H2(X , Q).

We can proceed as before, this time requiring that [P ]⊥ in the inner product (C.1) lie in

the orthogonal complement of [O], F , and all components Fp,i of reducible fibers. The

analog of eq. (C.3) is

ϕ : MW/MWtor →֒ H2(X , Q), taking P 7→ [P ]⊥, (C.7)

where

[P ]⊥ = [P ] − [O] − ([P ] · [O] + χ)F −
∑

p∈R

(
Fp,1, . . . , Fp,mp−1

)
A−1

p




[P ] · Fp,1
...

[P ] · Fp,mp−1


 . (C.8)

Here, Ap is the intersection matrix of the extra (i 6= 0) components of the reducible fiber

Fp,

Ap = Fp,i · Fp,j, where 1 ≤ i, j ≤ mp − 1. (C.9)

40The arithmetic genus is defined by χ(X ) = h2,0 − h1,0 + h0,0. For X a dP9, this gives χ = 1 and for a

K3 surface, χ = 2.
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Since A−1
p is not integral, [P ]⊥ lies in NS(X )Q = NS(X ) ⊗ Q but not in NS(X ).

In fact, we can be more explicit about how close to integrality Im ϕ is. Define the

essential sublattice of NS(X ) to be L = T⊥, and let ℓ = lcm{mp | p ∈ R}. Then,

Im ϕ ⊂ 1

ℓ
L. (C.10)

This is the geometric analog of the weak integrality condition on string junctions in sec-

tion 2.6.

Shioda goes on to show that the narrow Mordell-Weil lattice is

MW0
∼= L, (C.11)

and that

MW/MWtor ⊂ L∗, (C.12)

where L∗ is the lattice dual to L:

L∗ = {x ∈ L ⊗ Q | 〈x, y〉 ∈ Z for all y ∈ L}. (C.13)

The unimodular case. When NS(X ) is unimodular, eq. (C.12) becomes an equality.

This is the case, for example, for X = dP9. Using this result, Shioda also gives a useful

expression for the torsion subgroup of the Mordell-Weil group. It is

MWtor
∼= T/T ′, (C.14)

where T ′ = (T ⊗ Q) ∩ NS(X ).

C.2 Abelian surface fibration over a curve

The description of the Mordell-Weil lattice of an abelian surface fibration, or higher di-

mensional abelian fibration, is very similar to that for an elliptic fibration. Here, we sketch

the new ingredients necessary to define the height pairing in the general case.

On a smooth compact n-dimensional complex manifold X , any class c ∈ H2(X , R)

gives a map

Ha(X , R) → H2n−a(X , R), (C.15)

given by cup product with the (n − a)th power of c. When c is a Kähler class, and

in particular when c is the Chern class c1(L) of an ample line bundle L on a smooth

projective variety, the Hard Lefschetz theorem (cf. ref. [28], p. 122) says that this map is

an isomorphism for a between 0 and n. (The real coefficients can be replaced throughout

by the rationals, but the result fails over the integers.) We apply this in our case, with

n = 3, a = 2, where L is an ample theta divisor. This allows us to identify H2(X) = H4(X)

with H2(X). The natural height pairing on the Mordell-Weil lattice is determined in terms

of this identification.
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D Monodromy matrices for the abelian fibration Xm,n

First let us fix conventions in the simpler elliptically fibered case. In section 2.3, the

monodromy matrices K were defined to act on vectors
(p
q

)
, that is, on the components of

the homology class z = pα + qβ relative to a basis {α, β} of H1(T
2, Z). Let yi ∼= yi + 1

denote coordinates on the T 2. Then, a convenient basis for H1(T 2, Z) is {[dyi]}, and a

corresponding basis for H1(T
2, Z) is α = [S1

1 ], β = [S1
2 ], where the circles S1

i are chosen so

that ∫

S1
i

dyi = δi
j . (D.1)

In this basis, a class [ω] ∈ H1(T 2, Z) can be represented by ω = ωidyi and a class [z] ∈
H1(T

2, Z) by z = ziS1
i . Then,

(z1

z2

)
=
(p
q

)
, and by a slight abuse of notation we simply

write z =
(
p
q

)
as in section 2.3.

When a branch cut is crossed in the positive (counterclockwise) direction about the

branch point, the components and basis elements transform as

zi 7→ Ki
jz

j , S1
i 7→ S1

j

(
K−1

)j
i, (D.2a)

ωi 7→ ωj

(
K−1

)j
i, dyi 7→ Ki

jdyj. (D.2b)

These definitions all carry over to the case of T 4 fiber except that i = 1, 2, 3, 4 and we write

zT = (p, q, r, s), by the same slight abuse of notation.

Warm-up: N = 4 case, K3 × T 2. Before describing the monodromy matrices for the

abelian surface fibration Xm,n, it is useful to consider the N = 4 case. In the absence of

flux, the IIA dual of the type IIB T 6/Z2 orientifold is a compactification on K3×T 2, which

we can think of as a T 4 fibration over P1 in which a T 2 ⊂ T 4 trivially factorizes. Let y1, y2

denote the coordinates on the nontrivial T 2 fiber of K3, y3, y4 coordinates on the trivial

T 2, and y5, y6 coordinates on the P1 base.41 The monodromy matrices for K3 were given

in section 2.3. The collection of singular fibers is A16BCBCBCBC, with matrices KA,

KB and KC given by eq. (2.4). To obtain the corresponding monodromy matrices on the

T 4 fibration K3×T 2, we simply tensor with the identity matrix in the y3y4 block:

KA =




1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , KC =




2 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


 , KB =




0 −1 0 0

1 2 0 0

0 0 1 0

0 0 0 1


 . (D.3)

In the classical supergravity duality (cf. end of section 3.1), only the combined monodromy

of the pair O = BC is visible, with monodromy

KO = KCKB =




−1 4 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 . (D.4)

41Compared to ref. [46], we have (y1, y2, y3, y4, y5, y6)here = (x10,−x8, x4, x5, x6, x7)there.
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The fact that KA and KO have zeros in the 2, 3, 4 components of the first column reflects

the duality origin of K3×T 2 in the M-theory lift from the T 3/Z2 × T 3 orientifold: The y1

direction is the M-theory circle, and in the perturbative lift, this circle is fibered over the

other directions.

N = 2 case, Xm,n. In the N = 2 case, the manifold Xm,n arises as follows. We first

T-dualize the IIB T 6/Z2 orientifold along a T 3 to obtain a IIA D6/O6 orientifold. The

orientifold is not quite T 3/Z2 × T 3, since the IIB NS flux dualizes to twists of the T 3 × T 3

topology. Instead, the orientifold is Yn(y2, y3, y4, y5, y6)/Z2 × S1, where Yn is an S1
3 × S1

4

fibration over T 3
{2,5,6}. The global 1-forms on Yn are dy2, η3, η4, dy5, and dy6, with

dη3 = 2ndy2 ∧ dy5, dη4 = 2ndy2 ∧ dy6. (D.5)

Up to a choice of coordinate gauge (equivalent to a gauge choice for the NS B-field in

T 6/Z2), we can take

η3 = dy3 + 2ny2dy5, η4 = dy4 + 2ndy2. (D.6)

The Z2 involution is (−1)FLΩI3, where FL is left moving fermion number, Ω is worldsheet

parity, and I3 is the inversion I3 : (y2, y5, y6) 7→ −(y2, y5, y6), which acts on the 1-forms as

I∗
3 : (dy2, η3, η4, dy5, dy6) 7→ (−dy2, η3, η4,−dy5,−dy6). (D.7)

This type IIA orientifold lifts to M-theory on Xm,n×S1. Compactifying on the S1 factor

then gives the type IIA Calabi-Yau compactification on Xm,n. In the classical supergravity

description of the lift, Xm,n is obtained by fibering the M-theory circle over Ym,n and then

quotienting by the Z2 involution I4 : (η1, y2, y5, y6) 7→ −(η1, y2, y5, y6). Here, η1 is the

1-form along the M-theory circle, and satisfies

dη1 = F IIA orientifold
(2) /

(
2π

√
α′
)

= −2mη3 ∧ dy6 + 2mη4 ∧ dy5 + (warp factor dependence).
(D.8)

This leading order description falls short of the exact description of Xm,n, since it ignores

KK modes around the M-theory circle, and breaks the U(1) isometry only by the explicit

Z2. Nevertheless, it contains sufficient information to parametrize the exact description.

In summary, at the level of this description, the steps to construct Xm,n are

1. Fiber the S1
3 and S1

4 circles over T 3
{2,5,6},

2. Fiber the S1
1 circle over the resulting manifold Yn,

3. Quotient by I4, which inverts the 1, 2, 4, 5 directions.

To make the abelian surface fibration manifest, step 1 can be equivalently described as

1′. Fiber the torus T 3
{2,3,4} over T 2

{5,6},
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Then, the abelian surface fibration Xm,n can be understood as the T 4
{1,2,3,4} fibration over

T 2
{5,6}, quotiented by I4. The base of the resulting T 4 fibration is T 2

{5,6}/Z2
∼= P1.

The collection of singular fibers visible in this description is AMO1O2O3O4, where

the the locations of the Oi on P1 ∼= T 2
{5,6}/Z2 are the Z2 fixed points pi, with (y5, y6)

coordinates

p1 = (1/2, 0), p2 = (0, 0), p3 = (0, 1/2), p4 = (1/2, 1/2). (D.9)

With the appropriate coordinate gauge choice for y1, the monodromies KA and KOi
are

the same as those for K3×T 2. That is, KO2 = KO of eq. (D.4). However, the remaining

monodromies KOi
differ from KO. We deduce these monodromies as follows.

In the basis η1, dy2, η3, η4 (restricted to the T 4 fiber), the monodromies KOi
at all four

fixed points on the base are simply




−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 (D.10)

from the Z2 action on the fiber. However, we seek the monodromies in the coordinate basis

dy1, dy2, dy3, dy4 instead.42 Since the fixed points pi are locally equivalent to one another,

the monodromy matrices KOi
must be related by similarity transformation,

KOi
= TiKO2T

−1
i , where Si ∈ SL(4, Z). (D.11)

To deduce the transformation matrices Ti we first use the definition (D.6) to determine the

lower 3 × 3 block. From

η3
∣∣
y5= 1

2
= dy3 − ndy2, η3

∣∣
y5=0

= dy3,

η4
∣∣
y6= 1

2
= dy4 − ndy2, η4

∣∣
y6=0

= dy4,

we obtain the lower 3 × 3 blocks of the following matrices:

T1 =




1 0 0 −m

0 1 0 0

0 −n 1 0

0 0 0 1


 , T3 =




1 0 m 0

0 1 0 0

0 0 1 0

0 −n 0 1


 , T4 =




1 0 m −m

0 1 0 0

0 −n 1 0

0 −n 0 1


 , (D.12)

with T2 equal to the 4× 4 identity. The zeros in the first column follow from the fact that

the M-theory circle is fibered over Yn in our construction. The first row can be determined

by a careful analysis of the connection for the M-theory circle fibration, however, a simpler

route is to note that the similarity transformations Ti must leave the Hodge form (3.6)

invariant. This determines the first row except for the second component. Finally, this

component is required to vanish so that the T−1
i are also integral and Ti ∈ SL(4, Z).

42Recall that the homology components zi = (p, q, r, s) and cohomology basis transform in the same way

under monodromy transformations (cf. eq. (D.2)).
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Eqs. (D.4) and (D.12) together give

KO1 =




−1 −4 0 −2m

0 −1 0 0

0 2n 1 0

0 0 0 1


 ,

KO3 =




−1 −4 2m 0

0 −1 0 0

0 0 1 0

0 2n 0 1


 ,

KO2 =




−1 −4 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 ,

KO4 =




−1 −4 2m −2m

0 −1 0 0

0 2n 1 0

0 2n 0 1


 .

(D.13)

While the classical supergravity duality does not resolve Oi = BiCi into its two con-

stituents, we know that KO2 = KO of eq. (D.4) can be factored into the two monodromies

KB and KC of eq. (D.3), each related to KA via similarity transformation. Consequently,

the KOi
factorize as

KOi
= KCi

KBi
, where KBi

= TiKBT−1
i and KCi

= TiKCT−1
i . (D.14)

This gives the matrices quoted in section 3.3. The factorization is unique up to braiding

and overall SL(4, Z) conjugation.

E Null loop junctions of Xm,n

To determine the junction lattice vectors (3.27) of the null loop junctions of Xm,n, we

first transform the loop junctions to standard presentation, and then read off the number

of strings emanating from each A, Bi and Ci point on P1. To transform to standard

presentation, we push the lower half of the loop through each branch point in succession,

from left to right, applying the Hanany-Witten effect at each step (cf. figure 6). Once this

has been done, the original loop is contractible to a point, leaving just the new Hanany-

Witten strings intersecting at this point. The discontinuity in the (p, q, r, s) charge of the

original segment of string across a branch cut of Xi is equal to the charge zi of the new

string grown via the Hanany-Witten effect.
Consider the (p, q, r, s) = (1, 0, 0, 0) loop. After crossing each successive branch cut in

the counterclockwise direction, the new (p, q, r, s) charge is determined by multiplication
by the monodromy matrices (3.13) and (3.14). For the loop on the l.h.s. of figure 17, this
gives

A : no change,

B1 :




0 −1 0 −m

1 2 0 m

−n −n 1 −mn

0 0 0 1







1

0

0

0


 =




0

1

−n

0


 , B3 :




0 −1 m 0

1 2 −m 0

0 0 1 0

−n −n mn 1







1

0

0

0


 =




0

1

0

−n


 ,

C1 :




2 −1 0 m

1 0 0 m

−n n 1 −mn

0 0 0 1







0

1

−n

0


 =




−1

0

0

0


 , C3 :




2 −1 −m 0

1 0 −m 0

0 0 1 0

−n n mn 1







0

1

0

−n


 =




−1

0

0

0


 ,
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Figure 17. A loop junction of Xm,n transformed to standard presentation.

B2 :




0 −1 0 0

1 2 0 0

0 0 1 0

0 0 0 1







−1

0

0

0


 =




0

−1

0

0


 , B4 :




0 −1 m −m

1 2 −m m

−n −n 1 + mn −mn

−n −n mn 1 − mn







−1

0

0

0


 =




0

−1

n

n


 ,

C2 :




2 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1







0

−1

0

0


 =




1

0

0

0


 , C4 :




2 −1 −m m

1 0 −m m

−n n 1 + mn −mn

−n n mn 1 − mn







0

−1

n

n


 =




1

0

0

0


 .

(E.1)

The charges zXi
in the tree junction on the r.h.s. of figure 17, are the differences between

succesive (p, q, r, s) charges in eq. (E.1):

zAi
= 0, zB1 = −




1

−1

n

0


 , zC1 = −




1

1

−n

0


 , zB2 =




1

−1

0

0


 , zC2 =




1

1

0

0


 ,

zB3 = −




1

−1

0

n


 , zC3 = −




1

1

0

−n


 , zB4 =




1

−1

n

n


 , zC4 =




1

1

−n

−n


 . (E.2)

Note that zXi
∝ (p, q, r, s)Xi

, where (p, q, r, s)Xi
is the vanishing 1-cycle of Xi. The factors

of proportionality give the the components of the junction lattice vector. Reading off the

coefficients from eq. (E.2), we see that the lattice vector of the (1, 0, 0, 0) loop is

δ1 = (0M ; −1,−1; 1, 1; −1,−1; 1, 1), (E.3)

as claimed in section 3.4. In the same way, the (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) loops of

Xm,n give junction lattice vectors δ2, mδ3 and mδ4, respectively, where the δi are defined

in eq. (3.23).
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F Complex curves and their Jacobians

In this appendix, we provide background on complex curves and their Jacobian varieties,

and on the relation of the Jacobian variety to divisors, line bundles, and the Picard group.

This review largely follows ref. [28]. The broad picture to keep in mind is that in algebraic

geometry, the Jacobian JC of a genus-g curve C is a T 2g analogous to what a physicist

would call the moduli space of U(1) Wilson lines on C.

A genus-g curve has a fundamental group π1(C) with 2g generators ai and bi, for

i = 1, . . . g, subject to the relation

(
a1b1a1

−1b1
−1
)(

a2b2a2
−1b2

−1
)
· · ·
(
agbgag

−1bg
−1
)

= 1. (F.1)

The homology group H1(C, Z) is the abelianization of π1(C), that is, π1(C) modulo

its commutator subgroup {h1h2h1
−1h2

−1 | h1, h2 ∈ π1(C)}. Thus,

H1(C, Z) = Z2g, (F.2)

generated by 2g linearly independent 1-cycles γi. In a canonical basis of A-cycles and

B-cycles, we choose

γi = Ai and γg+i = Bi for i = 1, . . . , g, (F.3)

with

Ai ∩ Bj = δij , Ai ∩ Aj = Bi ∩ Bj = 0. (F.4)

So far, we have taken a topological perspective. However, it is also natural to take a

holomorphic perspective. The cohomology group

H0(C,Ω1) = Cg (F.5)

is generated by g holomorphic 1-forms ω1, . . . , ωg. By integration, we then have 2g period

vectors

Πi =




∫
γi

ω1∫
γi

ω2

...∫
γi

ωg




, for i = 1, . . . , 2g, (F.6)

and a g × 2g period matrix Π =
(
Π1 Π2 · · · Π2g

)
. By SL(3, C)L × SL(6, Z)R change of

basis, the period matrix can be put in standard form Π =
(
I | τ

)
, where I is the g × g

identity matrix and τ is a symmetric g × g matrix.

The Jacobian JC of a genus-g curve C is the complex torus

Cg/Λ ∼= T 2g, (F.7)

where Λ is the lattice generated by the period vectors Πi ∈ Cg. It is a principally polarized

abelian variety, as defined in appendix B, and conversely, any smooth principally polarized
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abelian variety is the Jacobian of some complex curve [28]. If xi and yi denote the coor-

dinates on Cg relative to the lattice basis, then the holomorphic 1-forms are the familiar

dx + τdy linear combinations

ωi = δijdxj + τijdyj . (F.8)

For a generic complex torus, τ need not have any special symmetry properties, however

the existence of a polarization implies that τ is symmetric.

Given a base point p0 ∈ C, the Abel-Jacobi map takes points on C to points on its

Jacobian variety JC :

µ : C → JC , µ(p) =




∫ p
p0

ω1∫ p
p0

ω2

...∫ p
p0

ωg




mod Λ. (F.9)

To connect this discussion to that in section 4.3.3 and appendix J, we now reinterpret

the Abel-Jacobi map in terms of line bundles on C. The Picard group Pic(C) is the space of

holomorphic line bundles on C.43 To each divisor D of C (i.e., to each linear combination

of points of C), is associated a line bundle [D], and to each line bundle L is associated its

first Chern class c1(L). If we write D =
∑

aipi and L = [D], then c1(L) counts the net

number of points of D, called the degree of L:

deg L =

∫

C
c1(L) =

∑
ai. (F.10)

We use a superscript Picd(C) ⊂ Pic(C) to denote the subspace of line bundles of degree d.

Note that the degree of a line bundle is multiplicative, Picm(C)×Picn(C) → Picm+n(C), so

that only Pic0(C) has a canonical group structure. In terms of U(1) Wilson lines, Pic0(C)

is the space of flat connections on C, that is, of holomorphic potentials A such that the field

strength Fi̄ vanishes. This makes it clear that for curves of nonzero genus, a line bundle is

not uniquely determined by its first Chern class. Finally, it can be shown that each divisor

D =
∑

aipi defines a meromorphic section (D) of the line bundle [D] = ⊗[pi]
ai , with a

zero of degree ai at pi for each ai > 0 and a pole of degree −ai at pi for each ai < 0 [28].44

In this description, the Jacobian variety of C is defined to be the space of degree

zero line bundles JC = Pic0(C). Note that each Picd(C) is noncanonically isomorphic to

Pic0(C), so it is also a T 2g. For example,

Pic1(C)
∼=−→ Pic0(C), (F.11)

by tensoring with a line bundle of degree −1, and similarly, Picd(C) ∼= Pic0(C) by tensoring

with the dth power of this line bundle.

43In sheaf theoretic terms, Pic(C) = H1(C,O∗
C).

44In appendix H, we correspondingly associate two sheaves to a divisor D =
P

aipi. O(D) is the sheaf

of meromorphic sections of [D] with poles of degree ≤ ai at pi for each ai < 0; and O(−D) is the sheaf of

meromorphic sections of [D] with zeros of degree ≥ ai at pi for each ai > 0.
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The Abel-Jacobi map directly follows. A point (divisor) p0 defines a map (F.11) via

tensoring with the line bundle [p0]
−1 = [−p0] of degree −1. Since any point p ∈ C defines

an element [p] ∈ Pic1(C), we obtain a map from C to JC = Pic0(C):

µ(p) = [p − p0]. (F.12)

G Genera of curves in P1
× P1

Consider a degree (α, β) curve Bα,β ⊂ P1 × P1. Let x, y denote the hyperplane classes of

the respective P1 factors, with x2 = y2 = 0. By the adjunction formula,

c(TBα,β
) = c(P1 × P1)/c(NBα,β

)

= (1 + x)2(1 + y)2/(1 + αx + βy)

= 1 + (2 − α)x + (2 − β)y + · · · ,

(G.1)

so,

χ(Bα,β) =

∫

Bα,β

c1(TBα,β
) =

∫

P1×P1

c1(TBα,β
) ∧ c1(NBα,β

)

= 2 − 2(α − 1)(β − 1).

(G.2)

On the other hand, χ = 2 − 2g for a genus g curve. Therefore,

g = (α − 1)(β − 1). (G.3)

H Direct image functor

Given a continuous map of topological spaces f : X → Y , the direct image functor, used in

the proof of the Calabi-Yau condition in eq. (4.11) and appendix I, provides a map from

sheaves on X to sheaves on Y . The purpose of this appendix is to provide background on

the direct image functor and higher direct images. For completeness, we begin with the

definition of a sheaf. For a more complete discussion, the reader is referred to sections 0.3,

1.1, and 3.5 of ref. [28], which we follow closely.

A presheaf F on a topological space X assigns a set F(U) to each open set U ⊂ X,

as well as a restriction map rU,V : F(U) → F(V ) to each pair U ⊂ V . The restriction map

is required to satisfy rW,U = rV,U ◦ rW,V for U ⊂ V ⊂ W . We will assume below that the

F(U) are abelian groups.

Then, F is a sheaf, provided that the following conditions are satisfied.

1. sections σ1 ∈ F(U) and σ2 ∈ F(V ) whose restrictions agree over the intersection

U ∩ V are the restrictions of a unique section over the union U ∪ V :

σ1

∣∣
U∩V

= σ2

∣∣
U∩V

⇒ ∃ρ ∈ F(U ∪ V ) such that ρ
∣∣
U

= σ1 and ρ
∣∣
V

= σ2. (H.1)

2. If σ ∈ F(U ∪ V ) and σ
∣∣
U

= σ
∣∣
V

= 0, then σ = 0.
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Common sheaves that we might consider are:

The locally constant sheaves Z, Q, R, C, with Z(U) = additive group of locally con-

stant Z-valued functions on U , and similar definitions for Q, R, and C.

The structure sheaf O, with O(U) = additive group of holomorphic functions on U .

The sheaf O∗, with O∗(U) = multiplicative group of nowhere vanishing holomorphic

functions on U .

The sheaf O(D). Given a divisor D =
∑

aiVi in terms of irreducible hypersurfaces Vi,

and its corresponding line bundle [D], we define O(D) = additive group of meromor-

phic sections of [D], with poles of order ≤ ai on Vi.

The sheaf Ωp, with Ωp(U) = additive group of holomorphic p-forms on U .

Maps of sheaves of abelian groups are group homomorphisms compatible with the sheaf

conditions on the restriction maps. Čech cohomology gives a definition of the cohomology

of sheaves. We refer the reader to ref. [28] for a description of Čech cohomology. For our

purposes, it should suffice to note that (i) such a cohomology can be defined, and (ii) it

agrees with de Rham and singular cohomology for the locally constant sheaves R and Z,

respectively. Likewise, the Čech cohomology of Ωp agrees with Dolbeault cohomology:

Hq(X,Ωp) ∼= Hp,q
∂̄

. (H.2)

Given a continuous map f : X → Y of topological spaces and a sheaf F : U → F(U),

a natural map of sheaves is the direct image functor f∗, defined by

f∗F : V → F(f−1(V )), (H.3)

for V an open set in Y . Likewise, we define the higher direct images Rqf∗ by

Rqf∗F : V → Hq(f−1(V ),F). (H.4)

The ‘R ’ stands for right derived functor.45

For a fibration F → X
f−→ B with generic fiber F , and U ⊂ B an open set of the base,

the open set f−1(U) ∼= U ×F contains the entire fiber over each point of U . Thus, to first

approximation Rqf∗(Q) is the constant sheaf Hq(F, Q) — the qth cohomology group along

the fiber (for contractible U). We then need to modify this approximation to take into

account the monodromy action of the fundamental group of B on the cycles in Hq(F, Q).

This definition via a first approximation followed by corrections can be made precise

in terms of a Leray spectral sequence {Ep,q
r } with E∞ ⇒ H∗(X,F) whose second step is

Ep,q
2 = Hp(B, Rqf∗F), (H.5)

45The direct image functor is left exact, but not necessarily right exact. However, under mild assumptions,

there is a canonical way to extend the sequence to the right to form a long exact sequence, by appending

“right derived functors” of F . These right derived functors are precisely the higher direct images.
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as explained on p. 462–468 of ref. [28]. For example, in de Rham cohomology, we have

Ep,q
2 = Hp

DR(B,Hq
DR(F )), (H.6)

where the right hand side is defined by viewing Hq
DR(F ) as a vector bundle over B associated

to a representation of the fundamental group.

In general, the cohomology rings H∗(X,F) and H∗(B, R∗f∗F) need not agree, however,

under further restrictions this is the case. For F = Q, and X and B compact and Kähler,

the sequence {Ep,q
r } can be shown to converge at the second step, so that

E2
∼= E∞ and H∗(X, Q) ∼= H∗(B, R∗f∗Q). (H.7)

In this case, the Hp(B, Rqf∗Q) give a filtration of H∗(X, Q) according to base and fiber

degree, much like the Dolbeault cohomology gives a filtration of the de Rham cohomolog

according to holomorphic and antiholomorphic degree.

I Proof of the Calabi-Yau condition

To evaluate eq. (4.11), it is convenient to factorize the projection map ρ : S → P1
u,v as

ρ = f ◦ ϕ, where ϕ is the double cover ϕ : S → P1
s,t × P1

u,v, and we define f and g to be

the projection maps f : P1
s,t × P1

u,v → P1
u,v and g : P1

s,t × P1
u,v → P1

s,t. Then,

ρ∗KS/P1 =
(
R1ρ∗OS

)∗
=
(
R1f∗ϕ∗OS

)∗
, (I.1)

where we have used Serre duality on the genus-2 fibers in the first equality. For a double

cover ϕ : A → B, we have the general result46

ϕ∗OA = OB ⊕OB(−1
2

(
branch locus)

)
.

In our case, this gives ϕ∗OS = OP1×P1 ⊕OP1×P1(−3,−1), from which

Riρ∗OS = Rif∗OP1×P1 ⊕ Rif∗OP1×P1(−3,−1). (I.2)

The first term is

Rif∗OP1×P1 =

{OP1 i = 0,

0 i = 1,
(I.3)

and the second is

Rif∗OP1×P1(−3,−1) = Rif∗
(
f∗OP1(−1) ⊗ g∗OP1(−3)

)

= OP1(−1) ⊗ Rif∗g
∗OP1(−3)

= OP1(−1) ⊗ g∗0R
if0 ∗OP1(−3)

= OP1(−1) ⊗ H i
(
P1,O(−3)

)

=

{
0 i = 0,

OP1(−1) ⊕OP1(−1) i = 1.

(I.4)

46For example, for the double cover ϕ : P1 → P1, z 7→ z2, we have branch points at 0 and ∞, and

ϕ∗OP1 = OP1 ⊕ OP1(−1). For ϕ : E → P1, with E an elliptic curve, we have four branch points, and

ϕ∗OE = OP1 ⊕OP1(−2).
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Here, f0 and g0 are maps from P1 to a point p, so that we have the following commutative

diagram:

P1
s,t × P1

u,v
f−−−−→ P1

u,vyg

yg0

P1
s,t

f0−−−−→ p

(I.5)

In the last line of eq. (I.4), we have used H0(P1,O(−3)) = 0, and by Serre duality47

H1
(
P1,O(−3)

)
= H0

(
(P1,O(1)

)
)∗ = C ⊕ C. Combining results (4.11) through (I.4), we

obtain NP1 = OP1(−1) ⊕OP1(−1), as claimed. The Calabi-Yau condition follows.

J Intersections of theta surfaces of X

In this appendix, we define the theta surfaces ΘI ,Θ
′
I of section 4.3.1, and compute their

double and triple intersections in X , as well as their intersections with the abelian surface

fiber A.

An outline of the construction of the theta surfaces is as follows. The genus-2 fibration

S → P1 has 2 × 12 = 24 sections ℓI , ℓ
′
I . Each defines an isomorphism

Pic1(S/P1)
∼=−→ Pic0(S/P1) = X . (J.1)

Once one such isomorphism has been chosen, each section ℓI or ℓ′I of S defines a corre-

sponding theta surface ΘI or Θ′
I , respectively, embedding S in the Calabi-Yau manifold X .

The correspondence is most easily understood fiberwise. Therefore, we first focus on

a single genus-2 curve C. In this case, each point p on the curve defines a theta divisor

Cp of the Jacobian abelian surface A, which is an embedding of C in A. We compute the

intersections of these Cp. Then, we fiber this construction over P1. This replaces C by S,

p by a section ℓ of S, and A by the relative Jacobian X of S. The double intersections in

A become curves in X , and we use this intermediate result to compute the desired triple

intersections in X .

Warm-up: intersections of curves in an abelian surface. Let us first review the

map between points of a complex curve and theta divisors of its Jacobian, and then use this

map to compute intersections the theta divisors in the genus-2 case, where the Jacobian is

an abelian surface. For background on complex curves C, their Jacobians JC , and spaces

of degree d line bundles Picd(C), the reader is referred to appendix F.

Let C be any curve of genus g. Picg−1(C) has a canonical Θ-divisor,

Θ = {L ∈ Picg−1(C) | h0(L) > 0}. (J.2)

More generally, for all d ≥ 0, consider the variety

Wd = {L ∈ Picd(C) | h0(L) > 0}. (J.3)

47For E a vector bundle and dim M = n, Serre duality states that Hp(M, E) = Hn−p(M,K ⊗ E∗)∗.
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Its dimension is min(d, g). When d = g − 1, Wd is a divisor of Picd(C). Otherwise it

is a subvariety of other dimension. Now, given a line bundle L ∈ Pic1(C), we have an

isomorphism Picd(C) ∼= Pic0(C), realized by tensoring with L−⊗d, so that Wd can also be

viewed as a subvariety of Pic0(C). Therefore, a line bundle L ∈ Picg−1(C) determines a

theta divisor ΘL ⊂ Pic0(C). In the case of interest g = 2, the result is as follows:

A line bundle L ∈ Pic1(C) determines a theta divisor ΘL ⊂ Pic0(C), embedding the genus-2

curve C in its Jacobian surface JC = Pic0(C).

In the genus-2 case, intersections of theta divisors in the abelian surface A = Pic0(C)

are computed as follows. Let us focus on line bundles L = O(p), where p is a point on the

genus-2 curve C, and denote the corresponding theta divisors (embeddings C →֒ A) by Cp.

Given two points p1, p2 ∈ C, we have

Cp1 ∩A Cp2 = {L ∈ Pic0(C) | h0(L ⊗O(p1)) > 0, h0(L ⊗O(p2)) > 0}
= O(−p1) ⊗ {q ∈ C | h0

(
O(q + p2 − p1)

)
> 0}

(
O(q) ≈ L ⊗O(p1)

)

= O(−p1) ⊗ {O(p1),O(p′2)},
= {O(0),O(p′2 − p1)} for p1 6= p2.

(J.4)

Here, p′ = ı(p) = h − p, where ı denotes the hyperelliptic involution on the genus-2 curve

(sending one branch to the other) and h is independent of p. For p1 = p2, the intersection

is the whole curve Cp1 = Cp2. We write this result simply as

Cp1 ∩A Cp2 =

{
{0, p′2 − p1} p1 6= p2,

Cp1 p1 = p2.
(J.5)

Note that p′2 − p1 = p′1 − p2, so that the intersection is symmetric. For p1 = p′2, the inter-

section consists of the single point 0 ∈ A, counted with multiplicity 2 for the homological

intersection.

Intersections of pairs of surfaces in the threefold X . Next, consider the genus-2

fibration S and its relative Jacobian X = Pic0(S/P1). In this case, the analog of the theta

curve Cp associated to each point p ∈ C is a family of genus-2 curves Cℓ associated to each

section ℓ of the genus-2 fibration. In the same way that each p determined a line bundle

O(p) ∈ Pic1(C) above, each section ℓ now determines a section of Pic1(S/P1).

Let ΘI ,Θ
′
I denote the total space associated to the family CℓI

, Cℓ′
I
, respectively. Each

of these theta surfaces is an embedding of S in the Calabi-Yau threefold X . From the

previous result (J.5), the intersections of pairs of distinct theta surfaces are

ΘI · ΘJ = σ0 + σℓ′
I
−ℓJ

, Θ′
I · Θ′

J = σ0 + σℓI−ℓ′
J
,

Θ′
I · ΘJ = σ0 + σℓI−ℓJ

, ΘI · Θ′
I = 2σ0 + CℓI∩ℓ′

I
.

(J.6)

Here, L → σL is the isomorphism identifying degree zero line bundles in Pic0(S/P1) with

sections of the abelian fibered threefold X . Note that ℓ′I − ℓJ = ℓ′J − ℓI as a consequence of

eq. (4.5). The curve CℓI∩ℓ′
I

is the common genus-2 fiber of ΘI and Θ′
I . For self intersections,

we have

ΘI · ΘI = c1(KΘI
). (J.7)
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Recall that C is the generic genus-2 fiber of the projection S → P1
u,v and C ′ is the generic

genus-0 fiber of the projection S → P1
s,t. Since ΘI

∼= S, the relevant fact for applying the

last result to the computation of triple intersections is

c1(KS) = C ′ − C. (J.8)

This result follows from the double cover formula KS = π∗(KP1×P1 ⊗ L) (cf. Lemma. 17.1

in ref. [5]). Here, L2 is defined by the branch curve B of the double cover S → P1 × P1 as

in section 4.1:

L2 = OP1×P1(B) = O(6, 2). (J.9)

This gives

KS = π∗
(
KP1×P1 ⊗O(3, 1)

)
,

c1(KS) = −2(C + C ′) + (3C ′ + C) = C ′ − C.
(J.10)

Triple intersections of divisors of X . Finally, the triple intersections of divisors in X
can obtained as double intersections of curves in surfaces. For example, for I, J,K distinct,

ΘI · ΘJ · ΘK = (ΘI · ΘJ) ·ΘJ
(ΘJ · ΘK)

= (σ0 + σℓ′
I
−ℓJ

) ·ΘJ
(σ0 + σℓ′

K
−ℓJ

)

∼= (ℓJ + ℓ′I) ·S (ℓJ + ℓ′K)

= −1.

(J.11)

Here, we have used the fact that σℓ−ℓJ
maps to ℓ ∈ S under the isomorphism ΘJ → S.

The remaining triple intersections of theta surfaces are

ΘI · ΘJ · ΘJ = ΘI · Θ′
J · Θ′

J = −2,

ΘI · ΘI · Θ′
I = ΘI · ΘJ · Θ′

J = 0,

ΘI · ΘI · ΘI = −4,

(J.12)

together with equations obtained from these by exchange of Θ and Θ′. The computation

is analogous to the previous one. Using eq. (J.6), it is possible to confirm that the result

is independent of choice of which of the three theta surfaces is used to perform the double

intersection.

We now turn to intersections involving the generic abelian surface fiber A. In this case,

A2 = 0, and

A · ΘI · ΘJ = A · ΘI · Θ′
J = A · Θ′

I · Θ′
J = 2, (J.13)

for any I, J , not necessarily distinct. This is most easily proven from the intersection of

curves in the abelian fiber A. For example,

A · ΘI · ΘJ = (A · ΘI) ·A (A · ΘJ)

∼= C ·A C = 2,
(J.14)

as desired. (In an abelian surface, the self-intersection of a genus-g curve is 2g − 2.)
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The same result is obtained if the intersections are performed in a theta surface. Let

CI denote the genus-2 fiber of ΘI
∼= S. Then, for example, for I 6= J ,

A · ΘI · ΘJ = (A · ΘI) ·ΘI
(ΘI · ΘJ)

= CI ·ΘI
(σ0 + σℓ′

J
−ℓI

)

∼= C ·S (ℓI + ℓ′J) = 2,

A · ΘI · ΘI = (A · ΘI) ·ΘI
(ΘI ∩ ΘI)

= C ·ΘI
c1(KΘI

)

∼= C ·S (C ′ − C) = 2.

(J.15)

In the last step, we have used the fact that the genus-2 fiber C of S satisfies C2 = 0 and

C · C ′ = C · (ℓK + ℓ′K) = 2.
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